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INTRODUCTION

The major objective of this report is to establish a relationship
between fatigue crack growth and internal damping. In defining this
relationship, a basis for monitoring the structural integrity of systems
subject to fatigue will be demonstrated. Thus, the value of this rela-
tionship is in nondestructive diagnostics, where the detection of crack
initiation and propagation are of great interest.

A secondary objective is the mathematical modeling of the crack
growth-internal damping relationship. To understand the relationship,
and apply it in the analysis of complex structures, a model is essential.
Without a model, extension of the relationship to allow monitoring of
structural integrity would be awkward and prone to failure. The model
provides a foundation to begin observations of fatigue failure, in
complex structures, using damping.

Previous work that categorized and analyzed damping mechanisms and
explored their relation with fatigue is described. Also, a detailed
description of subgoals required to establish a crack growth-internal

damping relationship is provided.

BACKGROUND

The purpose of this background section is to review existing
literature about internal damping and crack propagation and give the
reader an introduction to the research topic. Aspects of damping or
fatigue that relate to the research objective and are crucial to its

accomplishment are explored.




Damping Mechanisms

When a solid is subjected to vibration, several processes may occur
to dissipate energy, even at low amplitudes of vibration. The ratio of
energy dissipated to peak elastic energy is usually quite small; the
main significance being that information is provided as to the nature of
the processes involved. At large amplitudes, the proportion of energy
dissipated may be much larger as permanent damage accumulates within the
material.

The most important material damping process is the vibration of
dislocations. A dislocation is defined as a stable arrangement of atoms
such that, in the region of a few atomic distances, (n + 1) atoms in the
slip plane face (n) atoms across the slip plane (Figure 1). Movement of
dislocations produce an incremental strain that diminishes the effective
elastic modulus, while the energy dislocations dissipate during vibration
manifesting itself as "internal friction.”" There are also several relaxa-
tion processes contributing to internal friction that do not involve
dislocations. They are called relaxation processes because they change
the shape of the solid under load and because each has a certain charac-
teristic "relaxation time." Such processes are grain boundary sliding,
thermal diffusion, atomic diffusion, and magnetostriction.

The relaxation processes were named anelastic by Zener, who first
interpreted them in toto (Ref 1). They create a peak in the curve of
internal friction versus frequency of vibration at a frequency approxi-
mately equal to (relaxation time)-l. The magnitude of the internal fric-
tion is independent of the amplitude of vibration in a first approximation.
The more significant dislocation process is different in that no peak
exists until megacycle frequencies are reached, and the magnitudes of
the associated internal friction are not so independent of the amplitude
of vibration. To differentiate it from the relaxation processes it has
been called a process of static hysteresis (Ref 2).

Internal friction typically varies with the amplitude of vibration
(Ref 3) (Figure 2). Up to a strain amplitude of about 10-5 (Figure 2)
internal friction is independent of amplitude ("amplitude-independent"

range), then commences to increase with amplitude ("amplitude-dependent"
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range). For very large amplitudes, material enters the fatigue range
and damping increases still faster, ultimately resulting in a fatigue
fracture. In addition to the amplitude of vibration, temperature and
frequency may affect the internal friction.

Considerable evidence indicates that most of this internal friction
is connected with the movement of dislocations (Ref 4 through 8). Pro-
vided the selected conditions do not excite a relaxation peak, dislocation
movement is the process responsible for most of the internal friction in
metals.

Having established the basics of interna: damping and its primary
mechanisms, the next step is to examine previous attempts to relate

damping and fatigue.

Damping and Fatigue

Various researchers have sought a relation between damping and
fatigue. For many years, damping was believed to be the first indica-
tion of damage to material subjected to cyclic stress. It was further
believed that each metal was capable of dissipating only a certain
quantity of energy by internal damping, and that when this quantity was
exceeded, fracture by fatigue must follow. In fact, every experiment
made for the purpose of verifying this hypothesis has given negative
results.

Experimentally, Foppl (Ref 9) has shown that the capacity for
dissipation of energy in the form of heat by internal damping is un-
limited. He conducted an alternating torsion test continuously for a
period of 3 years without the test piece breaking or showing any sign of
deterioration after 1,100 million cycles of stress. The rate of dissi-
pation of energy was sufficient to maintain the test piece at about
100°C above the ambient temperature.

Damping, then, is not directly related with fracture by fatigue.
It depends principally on the strain energy of the cycles, on the
temperature and certain other conditions of the test, and also, to a
smal ler extent, on the number of stress cycles which have previously

been applied. For many metals, the damping capacity increases




noticeably up to a certain number of cycles (about 2 to 10 million), and
then remains stationary as long as the conditions of the endurance test
are maintained unchanged.

From previous tests, it is possible to advance the following theory:
a fatigue crack results from the accumulation of damping effects (i.e.,
from the fact that under a variable stress higher than the fatigue limit,
constantly applied, damping continually increases up to fracture). For
a cyclic stress below the fatigue limit, the damping moves toward a fixed
value, or else diminishes continuously.

The origination of fatigue cracks is marked by an increase in damping.
This increase is associated with the accumulation of dislocations. Since
cyclic input of strain energy alters the thermal and internal surface
energies, dislocations tend to collect on the planes already containing
one or more dislocations (Figure 3). Eventually, (n) atoms face (n + 2),
(n + 3), or more atoms, resulting in relative motion of one plane to the
other. For aluminum alloys, Hanstock and Murray (Ref 10) were able to
predict the endurance, in tests under alternating torsion, by observing
the stage at which this increase in damping occurred.

The change in damping with the number of stress cycles applied is
related to the process of accumulative damage that results in fatigue
fracture, although it does not directly express the effect of damage,
but rather the effect of localized inelastic deformations accompanying
damage. It is, therefore, not the absolute value of damping capacity,
but its change with the number of cycles that indicates the process of
progressive damage. As a further complication to the interpretation of
damping, above a certain value of stress, the damping capacity is reduced
by work hardening, and is increased by the repetition of stress cycles.

The work-hardening process in a material seems to be due to the
long-range elastic interactions of its dislocations. Additional input
of strain energy may help to overcome these long-range stresses to
accumulate more dislocations on the slip planes, until the crystal
separates into two or more fragments, with interference and distortion
of the adjacent crystals. Continued cycling would eventually cause the
cracks to grow and coalesce into an open area (resulting in an insuffi-

clent area to support the load) and finally fracture.




With the lack of success in previous attempts to directly relate
crack growth and internal damping, a different approach was sought.
Prerequisites to defining a new approach are the examination of fatigue

processes and an understanding of how these processes are modeled.
Fatigue Processes

In examining the crack tip on a microscopic scale, it is convenient
to regard the fatigue life as consisting of a number of stages (Ref 11,
12). The total number of cycles to fracture is divided into four parts.
The first stage occupies an average period of Nt

the completion of work hardening. A plastic zone forms under load and

cycles and represents

the crack tip blunts. An average period Nz is required for the formation
of the first submicrocracks, created by the accumulation of dislocations
at slip planes. Further N: cycles delineate the third stage, during
which the submicrocracks grow and coalesce to form a crack of detectable
size. Finally, these cracks propagate across grains until fracture or
rupture occurs, and an additional number of N: cycles elapse denoting

the fourth stage.

Damage occurs in the second stage and can be attributed to sub-
microcracks that are formed in regions where stresses are concentrated
because of the piling up of dislocations, or the presence of inclusions.
In succeeding stages two possible developments can occur. Either the
cracks grow quickly to a detectable size (the observable cracks at the
end of the third stage) or plastic flow occurs at the crack ends which
are stress concentration sites, so that the crack growth is temporarily
stayed. Stresses subsequently increase because of work hardening, and
new submicrocracks are formed at the ends of old submicrocracks. This
would suggest that cracks grow iteratively.

The general and most significant features of fatigue failure are
the initiation of surface microcracks and their subsequent extension
across and penetration into the body of the metal. The increased life
resulting from the removal of a surface layer at frequent intervals
throughout a test, irrespective of whether the life is many millions or
only a few thousand cycles (Ref 13), demonstrates that crack initiation

is confined to the surface grains. Dislocation models leading to surface




cracking have been proposed (Ref 14, 15, and 16) that lead to a geometric
cause of damage or damage on the slip plane. In general, surface cracking
can occur in any of three ways; specifically, as a continuation of surface
roughening in broad slip bands, as a result of severe strain incompati-
bilities across grain boundaries, or because of the presence of inclusions
or inhomogeneities in the surface.

Theories of crack growth based on a dislocation model begin with a
crack loaded in antiplane strain (Mode II1). The plastic zone at its
tip can be conveniently represented by a continuously distributed array
of infinitesimal dislocations on the crack plane. Crack growth is assumed
. to start when the accumulated plastic strain distribution at a crack tip
exceeds a critical value (stage 3), and continues as this value is exceeded
at successive points ahead of the original crack tip. It is then assumed
that the behavior in Mode I is similar to behavior in Mode III. In general,
such theories (Ref 17) predict that the rate of crack growth is proportional
to K 4 (or AK, depending on the load cycle considered, where AK = (K

I max
- K ., ) and K and K , are the maximum and minimum values of K. during
min max min

the fatigue cycle). As an example, Weertman's theory (Ref 18) stzrted
with a model (Ref 19) of a freely slipping crack subjected to an applied
shear. In the model, a crack of length 2a, having plastic zones at either
end, was considered and the dislocation theory was used to calculate the
displacement in the vicinity of the crack tips due to this shear stress.
It was then shown that, under certain conditions, a crack lying normal

to a tensile stress, ¢, can be considered in a similar manner.

The energy associated with the plastic zone at a crack tip is pro-
portional to KIA. Theories based on the energy required to operate the
fracture mechanism, in general, will predict that the rate of crack growth
is proportional to Kla, which is in agreement with dislocation theories.

The modeling of fatigue processes has found some success in estimating
fracture based on energy or work at the crack tip. In particular, equa-
tions relating plastic work and fracture are com on in the literature.
Relating crack growth to internal damping through plastic work dictates

a study of the role of plastic work in fatigue.




Plastic Work in Fatigue

Coffin and others (Ref 20) found that data obtained from reversed
direct constant plastic strain amplitude tests, designed to give failures

in up to about 105 cycles, conformed to the relationship:
N g =0 (1)

where N is the number of fatigue cycles, Ep is the plastic strain ampli-
tude, and C is a material constant. In the case of annealed low-carbon
steels exhibiting a marked yield point, the relation does not apply in
the immediate region of discontinuous yielding, but becomes applicable
for the balance of the stress-strain curve. Manson (Ref 21 through 24)
presented 1n analysis of direct loading constant plastic strain amplitude
tests for 30 materials of widely differing static properties (Ref 25)
showing that in all cases the endurance up to about 5 x 104 cycles was

related to the plastic strain range by the relationship.

He suggested that the results conformed to this relationship, and not
Equation 1, because N had been taken as the number of cycles to complete
the fracture of the specimen. Equation 1 was based on endurances where
cracks were first visible on the specimen surface. It is now accepted
that the value of the exponent in Equation 1 is not a universal constant;
it varies with material, environment, and the criterion adopted for failure
(Ref 26, 27).

The relationship between stress, plastic strain, and plastic strain
energy during a low-endurance fatigue test was studied by Morrow (Ref
26). He related fatigu: life to the total plastic strain energy generated;
that is, C is made a function of the integrated areas of the hysteresis
loop up to the point of failure. Radhakishnan (Ref 28) modeled fatign-
failure on the basis of total energy absorbed and proposed that the total

hysteresis energy to failure, Wf, can be given by:




Ne

wf = ] dw(N) dN (2)
0

where dw is the plastic energy absorbed per cycle at any given time and
Nf is the number of fatigue cycles to failure. For most materials, the
hysteresis loop is relatively stable after a certain initial life. Taking

Ep as the average value of the plastic-strain range during the lifetime,

the energy absorbed per cycle can be approximately given as:
dw = A, o ¢ (3)

and the total energy absorbed, Wf, up to fracture will be:

wf = Azcaspr 4)

where A2 is a material-dependent constant and 9 is the maximum cyclic
stress.

Experimental data supporting the (AK)Q depe’ uency of growth rate
predicted by both dislocation and energy theories can be found in the
literature. For example, tests (Ref 29) on steel, aluminum alloy,

titanium, and magnesium sheet have shown that:

da
dN

D(AK)A

where D is a material constant. Similar results were obtained for 70/30
brass specimens (Ref 30). On the other hand, data can be found in the
literature that do not ronform to this relationship (Ref 31). ’

Attempts to correlate plastic work directly with crack growth (Ref

32) have resulted in:

da
dN

(aK)”

= A
Gv?U

N




where A is a dimensionless constant, G is the shear modulus, ¢ is a
strength parameter, and U is the integrated plastic work expended in the
plastic zone. 1Izumi and Fine (Ref 32) conclude that the plastic work
per unit area of fatigue crack propagation is an important parameter
that establishes the rate of fatigue crack growth. This report will
assume that Izumi and Fine are accurate in their conclusion, and will
attempt to use plastic work as a basis for measuring structural damage

and coupling internal damping with crack propagation.

OBJECTIVES

This research has two objectives. The first objective is to
experimentally develop a relationship between lcw cycle fatigue crack
growth and internal damping. The second objective is the mathematical
modeling of specimens to interpret and extrapolate the internal damping-
crack growth relationship and apply it to other geometries and load
conditions.

Accomplishment of these two objectives will establish a foundation
upon which nondestructive evaluation techniques may be constructed. The
first objective, the relationship, provides a basis for monitoring
structural integrity. The second objective, the mathematical model,
provides a process for expanding the relationship to meet the demands of

monitoring complex structures.
Relationship of Crack Growth and Damping

Various researchers have shown that crack propagation and internal
damping are closely linked: fatigue damage is accompanied by changes in
specific damping capacity. This relationship, however, is not a direct
one. The failure of many experiments to prove a direct relationship has
made that point clear. To determine how damping is related to crack
growth, an investigation must look for an Indirect linkage between the
two phenomenon. An indirect linkage suggests that the establishment of
this relationship requires the merger of two previously developed theories

rather than the creation of a new theory; two theories, an internal damping




mechanism and a fatigue damage mechanism, that have a common element.
In merging the two mechanisms to form a single theory of fatigue damage
accompanied by internal damping, care must be taken to assure that both
mechanisms are used within the context of their assumptions.

The relationship must be expressed in a manner that facilitates
experimental verification. Thus, an analytical expression of crack
growth or fatigue damage as a function of changes in specific damping
capacity is required. To verify this expression and the associated
relationship, a series of fatigue tests must be planned. In general,
testing would begin with fatigue specimens that minimize effects of
complex parameters such as specimen geometry, variable loading 1ind
stress fields. After these initial experiments provided satisfactory
results, more complex parameters could be included for testing and

verification.

Mathematical Model

To incorporate increasing complexity into the testing, the
specimens must be mathematically modeled. The modeling provides two

significant functions:

1. A model allows more complex specimens to be fatigue tested by
revealing the interaction of the additional parameters. Changes to
specimen geometry or loading will affect both crack growth and internal
damping, the effects of these changes must be known in advance in order

to verify the test results.

2. A model will provide a solid foundation for a diagnostic tool
for detecting crack growth in structures. The model must be simple to

act as a tool, but it must be comprehensive to provide accuracy.

Verification of the model requires simple fatigue specimens that
can be vibrated at low amplitudes during the fatigue process for data
collection. The data from the series of tests will be analyzed using

the model for comparison with the actual test results.
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The model will have to include elements to express a continuous

structure (the specimen) undergoing both dynamic (data collection
cycles) and static (fatigue cycle) loading. In addition, the model must
adequately handle a growing crack (or cracks) in the specimen as well as
the changing internal damping capacity. The internal damping is not
only changing at a global level, but on a local level as well. Damping
is a localized phenomenon, and areas close to a propagating crack will
dissipate heat at higher rates than areas remote from the crack (Ref
33).

TECHNICAL APPROACH

An analytical approach to develop a relationship between crack
growth and internal damping is presented to provide the theoretical
foundation for the relationship; a foundation integrating internal

damping, crack growth, plastic strain, and dislocationms.
Internal Damping Mechanism

The goals of this section are to define an analytical expression
for internal damping and to accommodate, within that expression, the
strain distribution experienced by a structure or system. The phrase
"analytical expression'" is used, rather than "mathematical model,"
because the product of this section represents a single mathematical

term or expression of the final model.

Analytical Expression. In 1956, Granato and Lucke (Ref 34) pre-
sented a theory of internal damping due to dislocations. Granato and
Lucke examined two types of losses: frequency-dependent loss (AI) and
strain-amplitude dependent hysteresis loss (AH). Their theory provides
a quantitative interpretation of these losses. The two losses are given

by (Ref 35):
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and

~ where A

|
o

=

Assuming that all parameters in Equation 5 can be held constant for
a given material under cyclic stress, with the exception of A and ¢

the equation may be rewritten as:

3 1
QAOALN Ke'A 1

Ke'a )
~— exp (‘ P (5)
nLC Lc £, Lc L
QA _AL* Bu
0 ¢
p2C -
mechanical energy lost per cycle divided by twice .

the total vibrational energy

total length of movable dislocation line per unit volume
(dislocation density)

lattice parameter
strain amplitude
circular frequency
Poisson's ratio
4(1-v)/n?

‘npb2

26b2/1(1-v)

density

Burger's vector
network loop length
impurities loop length
effective length of dislocation loop

orientation and anisotropy parameter

orientation factor )

0)
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0 = ACICZ/z0 exp(-Czleo) (6)

where C1

of the strain amplitude data may be described in terms of a single func-

3 ,
QAOLN /7L _ and C, = Ke'a/LC. As modeled by Equation 6, all
tion and when plotted in the form:

log(sOAH) versus l/s0

should lie on a straight line. The slope of this straight line is given

by C, and the intercept by AC Figure 4 shows a Granato-Lucke plot

c,.
2 172 -1
of strain amplitude times decrement versus (strain amplitude) .
Bauer and Gordon (Ref 36) expressed the amplitude-independent
decrement, AI’ resulting from dislocation vibration in the kilocycle

range of frequencies as:

AI = C3A 7
4 2 ;
where C3 = QAOLc Bw/m°C. The total decrement, A, equal to AI + AH is
now presented in terms of Equation 6 and 7.
A = A[C3 + CICZ/E0 exp(Cz/so)) (8)

Equation 8 provides a relation between internal damping, A, and dislocation
density, A.

The Granato-Lucke (G-I) theory does not always reflect experimental
results and its accuracy is unclear. At times, experimental data plots
of log(soAH) versus l/t0 are not straight but somewhat curved (see
Figure 4). The decrement measured at low strain amplitudes appears to
be greater than that predicted by the theory. Some have argued that the
model is essentially correct but the calculations are not yet sufficiently
refined. Other authors have recommended modifications to correct the

model (Ref 37 through 40). Unfortunately, all these detailed discussions
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are inconclusive because of the difficulty of specifying all the various
significant factors. In particular, the dependence of the decrement on
strain amplitude (Equation 5) is largely determined by the distribution
function for the lengths of the dislocation loops, LN' Granato and Lucke
assume an exponential function, but there is little substantiation of
this approximation for any given material or geometry.

The theoretical treatment that researchers have used to explain
internal damping, as illustrated in Figure 2, is broken into three
regions. These regions are labeled in Figure 2. The first two regions,
elastic and anelastic, are a function of dislocation damping. For the
elastic region, the dislocations are assumed pinned by point defects,
and vibrating as stretched strings, subject to viscous damping. 1In the
anelastic region, the stress level is sufficient to bow out the disloca-
tion and pull it away from pinning point defects. Lowering the stress
repins the dislocation, but the motion is different on the outward and
return paths, producing a hysteresis loop. The third region, fatigue-
plastic, is believed to result from the formation of microcracks that
can fuse together to form fatigue cracks. For pure aluminum, shown in
Figure 2, dislocation damping is the dominate form of damping up to 2 x
10_4 microstrain.

A second treatment, evolving from McKavangh and Stacey (Ref 41) and
Jackson and Anderson (Ref 42), is that the dominate cause of energy
dissipation, in the anelastic region, is grain boundary relaxation or
slippage. It is difficult to apply the conclusions of Jackson and
Anderson to this research, however, since their study investigated
attenuation in the earth's mantle, an environment of high temperature
where dislocations are likely to be annealed out. The work of McKavangh
and Stacey, on the other hand, raises doubt as to the nature of the
hysteresis in the anelastic region. Their observations support non-
linear internal friction due to cracks or grain boundaries. Further
examination into the nature of anelastic internal damping is needed, but
given the two theoretical treatments available, this research effort
will rely upon the extensive experimentation and analysis that are

embodied in the Granato and Liicke model.
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Application of the G-L theory in the form of Equation 8 is compli-
cated by the pattern of strain amplitude distribution within a specimen.
Longitudinal, flexural, and torsional forced vibrations produce different
strain distributions. The different strain distributions necessitate
the derivation of mathematical expressions of the decrement on the basis

of each type of vibration.

Strain Distribution. According to Equation 4 of Reference 43, the

strain amplitude-dependent decrement distribution is given by:

B, = szAH(s)dV/g e2av (9)

where V is the volume of the specimen. Povolo (Ref 44) showed that an
expression for AH can be obtained directly in terms of exponential
integral functions and that Equation 6 oversimplifies the results for
the valid range of strains as given by Granato and Liicke, that is,

eO/C2 < 0.25. From Povolo:
AS = AC,(C,/e)2E (Cfe ) (10)
H 17270 172770

where E1 is the exponential integral of order n = 1 and:

is the exponential integral function. From Equation 9, using Povolo's
corrected strain amplitude-dependent decrement of Equation 10, the dis-
tributinn peculiar to the type of vibration can be derived.

A slight modification to Equation 9 (required for specimens that
have developed interior plastic zones at a location of stress concen-

tration) is separate integrals for the plastic and elastic regions.
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Given a small amplitude of vibration, it is assumed that the only

€.,
parameter that changes in Equation 9 begween the two regions is the
dislocation density, A. This assumption is based on small amplitude
vibration of the specimen when internal damping data is collected.
Burdett and Queen (Ref 45) noted that internal damping developed during

plastic strain may be expressed in the form:

Ap = A exp [B(s0 - sp)]

where Ep is the critical strain above which plastic strain occurs, and A
and B are temperature-dependent terms. Burdett and Queen concluded that
the G-L model is valid in cases where the movement of the dislocations
is not affected by obstacles outside their equilibrium position. This
is the case when the specimen experiences low strain vibration; therefore,
it is valid to assume that only the dislocation density has changed when
comparing internal damping between the elastic region and plastic zone.
The distinction between the AH and Ap contributions appears to involve
the degree of pinning of dislocations. For lightly pinned dislocations
the contributions are well separated. In the case of heavily pinned
dislocations, the AH is suppressed completely and the dislocations
contribute immediately to Ap at relatively high strain amplitudes.

The plastic zone size and shape depends on the plastic flow
properties (Ref 46), but the dimensions are proportional to (KI/OY)Z.

The nominal plastic zone radius, rp, is approximately:

2
1 Kl
r = == (_7) for plane stress (11)
p 2n Iy
and
1 KI :
r = - (—~) for plane strain (12)
p 6m Oy
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where Oy is yield stress. The plastic zone radius is about half the
extent of the plastic zone and is applicable when the zone size is small
compared to the specimen dimensions in the plane of the plate.

Breaking Equation 9 into two separate integrals (the first for the

elastic region and the second for the plastic zone) produces:

- 2 2 2
A; = (A (¢ Oﬁ(s)dv A fp £ O}C{(e)dvl/f £“dv (13)

where the parameters with subscripts e and p correspond to the elastic
region and plastic zone, respectively; the strain-dependent function,

0;, is given by:

c _ 2
GH = Cl(Cz/so) El(CZ/so) (14)

that is, 0; = A;/A. In a similar manner, the strain-independent decrement
may be expressed as A =c¢ (A V +A V)/V, where V_ and V_ are the
1 3 e e P P e P
volumes of the elastic region and plastic zone, respectively.
Equation 13 expresses material dislocation damping as a function of
elastic and plastic strain distributions given by Equation 14. Having
obtained an analytical expression for dislocation damping, the second

step is to develop a fracture failure criterion.

Crack Growth

Monitoring structural integrity requires a procedure for quantifying
fatigue damage and estimating crack growth. A fracture criterion based
on plastic work is proposed for accomplishing this task and providing an

interface to amplitude-dependent damping.

Failure Criterion. In selecting Equation 3 as a fracture criterion,
Feltner and Morrow used the empirical equation 0a = kpspn (see Figure 5)
to relate the true plastic strain to true stress as shown in Figure 6
(Ref 47). With their empirical stress-strain relation, Feltner and

Morrow were able to express Equation 3 as:
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W, = Ake N (15)

so that the total energy absorbed to fracture is a function of the true
plastic strain average, Ep' For the purposes of this investigation, the
definitions of true stress and true strain are taken from Davis, Troxell,
and Wiskocil (Ref 48). In postulating that the plastic-strain energy
portion of the hysteresis energy accounts for the damaging effects of
cyclic stress, Feltner and Morrow made three assumptions: (1) a loga-
rithmic plot of static true stress versus true plastic strain is valid
when extrapolated back into the fatigue stress region; (2) the damaging
energy per cycle for a given stress amplitude is constant and is equal
to the area under the static stress plastic-strain curve; and (3) the
tctal damaging energy required to cause fatigue fracture is constant and
as a first approximation is equal to the area under the static true
stress - true strain curve.

A correction made to assumption 3 is that the total damaging energy
required for fatigue fracture is not constant but related to the strain

amplitude per cycle as follows:

v = (?) (16)

where m is the hysteresis energy exponent which Halford and Morrow (Ref

49) derived from Griffith's crack theory. Halford and Morrow's value,

m = 4n, is accurate for 4340 steel, but not necessarily for other metals.
There does not appear to be a relationship between sirain amplitude and
hysteresis energy to failure that is independent of material properties.
The lack of a relationship between strain amplitude and hysteresis energy
does not invalidate Equation 16 or assumption 3, it simply requires experi-
mental determination of m for each material investigated. Combining
Equations 15 and 16 results in a relationship between plastic strain and
fatigue life:
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where k = 1/C and C, the fatigue-ductility exponent introduced in the
Manson-Coffin law, is shown to be 1/(5n+1). Again, this value is accurate
only for 4340 steel. From Radhakishnan (Ref 28), m is not equal to é4n,
but is given by the formula:

m = k - (n+1)

Both n and C (and thus k) must be determined experimentally. Substituting

spu’ Ep’ 1/2, and Nf for ¢ £ N., and N2, respectively, and rearranging

| A

Equation 15:

-k
£ 1/2 (sp/spu) (17)

z
]

produces a power law relation between fatigue life and the average plastic
strain per cycle. In Equation 17, Epu is the static plastic strain fracture
value at 1/2 cycle. Figure 7 demonstrates the relationship between fatigue
life and average plastic strain per cycle as modeled by Equation 17.
Criticism has been levied against the use of hysteresis energy as a
criterion for fatigue failure. The first criticism is that attempts to
correlate fatigue life with tensile properties have been unsuccessful.
However, there are investigations that indicate a relationship between
the fatigue strength and parameters of the true stress-true strain curve
(Ref 50 and 51). The second source of criticism is due to the difference
between monotonic and cyclic stress-strain curves. This is a minor argu-
ment, since the difference is small enough to neglect when the two curves

are compared in the fatigue stress range (Ref 28).

Material Properties. Crack growth is a material-dependent phenomenon.
The total hysteresis energy to failure, Wf, and plastic energy absorbed
per cycle, dw, were presented in Equation 2. For most materials, the

hysteresis loop is relatively stable after a certain initial life. This
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stability is dependent on the stress level. There is more stability at
low stress levels than at high stress levels. In some cases, like carbon
steels, no stable loop is obtained throughout the life of the specimen,
especially when the stress level is near the yield strength. A consid-
erable amount of softening is observed during the initial stages, followed
by a hardening process, which is rapid when the stress level is high and
slow when the stress level is low. Hence, the value of dw per cycle
changes with stress cycles depending on the hardening and softening of

the material.

The empirical relationships and mathematical models developed to
correlate fatigue life with mechanical properties of metal have been
criticized for depending too greatly on the idealization of the pro-
perties of metals. At the microscopic level where fatigue damage
initiates, all metals are heterogeneous. The fatigue resistance of a
small volume of material will differ from that of another because of
inclusions, differences in grain size, anisotropy, orientation, micro-
residual stress, etc. The fatigue behavior of a real material is the
integrated phenomenon of these various microscopic factors. The dis-
tribution of these factors, and thus the metal's mechanical properties,
are random throughout the material. Because of this probabilistic
distribution, the fatigue limit and fatigue life at a given stress will

vary from specimen to specimen.

Plastic Strain and Dislocation Density

An empirical relationship between plastic strain and dislocation
density is presented. This section couples together fracture criterion,
based on plastic work, with internal damping, based on dislocation

density.

Dislocation Model for Stress-Strain Behavior. A number of authors
have expressed stress-strain behavior via a dislocation model. For alpha
iron (a-Fe), during constant strain-rate tensile exp.riments, modeling
the yield-point behavior has produced a variety of theories. Cottrell
(Ref 52) explained the upper yield point by introducing the pinned dis-

location concept A relatively high initial stress was required to unpin
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dislocations, but once unpinned they could move at a lower stress level.
in his approach, Hahn (Ref 53) explained the yield-point phenomenon as a
result of the rapid increase of mobile dislocations when yielding begins.
A model developed somewhat later by Bergstrom (Ref 54), emphasizes the
A-t relationship and is based on dislocation behavior during deformation.

Bergstrom has five assumptions for his model:

1. The true flow stress-dislocation density relation is given by:
o = o, + aGbrl/? (18)
io

where a and g, are constants. A review of experimental data in support

of Equation 17 is provided by Otte and Hren (Ref 55).

2. Both mobile and immobile dislocations are present at any true

strain, €.

3. The mobile density, L, is strain independent and much smaller

than the immobile density, Ai.

4. The variation of A with € is determined by the creation, the

immobilization, the remobilization, and the annihilation of dislocations.

5. Those effects that arise from changes to the scale or arrange-
ment of the dislocation structure and that do not affect assumption &

above, are negligibie.

Bergstrom derived the following differential equation, giving the

dislocation density, A, as a function of plastic strain, €

dh  _ i
d—sp— = U, - xA (19)

where U is the rate of immobilization of mobile dislocations and x is
the strain-independent probability for the remobilization of immobile
dislocations, and:
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Ui = 1/%bs

where ¢ is an orientation factor (0.5 and 0.32 for b.c.c. and f.c.c.,
respectively) and s is the dislocation mean free path. Bergstrom (Ref
54) contends that a strain-independent s is a good approximation for
b.c.c. metals if X is small enough for the product XA to be negligible
at small strains. With a strain-independent Ui’ the integration of

Equation 19 results in:

U,
A= -

i
= - - + -
~ (1 exp( xep)] Aoexp( Xsp)
with A = A, at £ = 0.
0 p

As a modification to the Bergstrom theory, Vetter and van den Beukel
(Ref 56) assume the dislocation mean free path is of the order of and
proportional to the dislocation cell size, d. The cell size decreases
with increasing strain, and has been shown to depend on the dislocation

density according to:

K
d = &
A1/2
where K = 20 for iron. Therefore:
K
. o= ¢ K _ (20)
A1/2
where f is a constant of order 1. Inserting Equation 20 into Fquation
19 and integrating
1/2 A' 1/2
= — - - + 3 -
A X [1 exp( I/ZXEp)] AO exp( 1/2ti) (21)

where A' = 1/¢bKf.
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Damping Mechanism-Fatigue Criterion. Equation 21 provides a
relationship between plastic strain amplitude and dislocation density
and is the link to combining the damping mechanism (Equation 13) with
the fatigue criterion (Equation 17). Rearranging Equation 21 so as to

nIpress sp as a function of A,

*_x_é_) (22)

For the fatigue criterion, as described by Equation 17, the average
plastic strain, Ep’ is the sum of the plastic strain per cycle, ¢_,,

pi
divided by the number of elapsed stress cycles. In equation form:

N
€ = % 2 £ (23)

where N is the number of elapsed cycles. The right-hand side of Equation
22 is then substituted for Epi in Equation 23 and the fatigue criterion

becomes a function of dislocation density:

N
E’p = N—i Z 1n (»}\1—172———’"‘\') (24)

Damping was previously shown to be dependent on dislocation density
(see Equation 13); however, this dependency consists of two dislocation
density terms: Ae and Ap. It is now assumed that the plastic zone dis-
location densi.y, Ap’ is responsible for all plastic strain directly
related to crack growth, so that no crack growth exists in the elastic

region. That is to say, Equation 22 may be rewritten as:

A 1/2
_ 2 P X - A')
e = 2 g (-p__x-A (25)
P X 1\01/2 X - A'
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%
9 stage (Ref 11, 12)

where voids form in the plastic zone and coalesce into microcracks.

Equation 25 is consistent with the fatigue process N

This situation is illustrated in Figure 8 and is modeled by Ishikawa
(Ref 57) as a slow crack extension within the plastic zone, where the
plastic zone is a uniform distribution of dislocations. Ishikawa derives

the plastic strain in the plastic zone from the crack extension force

as:
sp = a(s/rp) (26)

where a is approximate unity.

Rearranging Equation 13 into:

AS v [ e2av - A [V [ €20%(e)dV + C V| £2av]
A = e e H 3'e (27)
P 2.¢ 2
\Y fp € On(s)dV + C3Vp [ eadv

solves for the plastic zone dislocation density Ap in terms of the cor-
rected total decrement, KC; the elastic region dislocation density, Ae;
the plastic zone radius, rp; and the strain amplitude, €. Dislocation
density increases for some metals at stresses below the macroscopic yield
(Ref 58) and under these conditions it is not possible to eliminate Ae

as a variable. However, for metals whose dislocation density does not
increase appreciably until yield, AO may be used in place of AE (Ref

56).

Fquation 17 presents fatigue life as a function of average plastic
strain. Fquation 24 determines average plastic strain from dislocation
density in the crack tip plastic zone. FEquation 27 gives plastic zone
dislocation density from internal damping. With Fquations 17, 24, and
27, the objective of developing a theoretical relation between fatigue
and damping has been accomplished. The next requirement is to test the

validity of Equations 17, 24 and 27.
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EXPERIMENTAL APPROACH

Experimental verification of the theoretical development of a
relationship between crack growth and internal damping begins with the
determination of material properties, including damping, and concludes

with fatigue testing of 1018 and 4340 steel beam specimens.

Purpose

The main purpose of experiments is to test hypotheses. The fatigue
tests used in this research will determine whether internal damping

changes with crack growth as suggested by Equations 17, 24, and 27.

Damping Mechanism-Fatigue Criterion Relationship. Successful ver-
ification of Equations 17, 24, and 27 in a test series of one material
and specimen type is no assurance that the proposed constitutive rela-
tionship between crack propagation and internal damping is valid for all
material and specimen types. It merely states that the relationship
between fatigue and damping is valid for the material and strain dis-
tribution tested. A measure of validity, rather than complete verifi-
cation, is required at this point. Determining whether or not the
relationship can be established for a particular material and specimen
type is the first step. This relationship was built through a process
of steps culminating in Equations 24, 25, and 27. As many of these steps
as possible must be independently verified to assist in determining the
problem areas if discrepancies arise. Therefore, the primary purpose of

testing is to determine:

1. Is plastic work related to fracture as suggested by Equation
157

2. 1Is plastic strain related to fracture by Equation 177
3. Does Equation 13 accurately model internal damping as a
function of strain and plastic zone and elastic region

dislocation densities?
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4. Will the Bergstrom model relate plastic strain and dislocation

density as expressed in Equation 22?7

5. Do all the previous steps combine to relate crack propagation

to internal damping?

The five questions listed above interrelate internal damping, crack
propagation, plastic strain, and dislocation density. These four param-
eters must all be evaluated during testing in order to verify the internal

damping-fatigue criterion relationship.

Fatigue Life, Damage Assessment, and Fracture Prediction. A step
beyond verifying the internal damping-crack growth relationship is to
predict fatigue specimen life and the subsequent specimen failure. The
fracture prediction process entails extrapolating the average plastic
strain calculated from the damping data to arrive at the predicted total

number of fatigue cycles to fracture, N as presented in Equation 17.

fp’
A simple approach to damage assessment is to use the ratio of fatigue

cycles completed, Nc’ to fatigue cycles to fracture, N_ , as predicted

fp
by the fatigue life estimate of Equation 17. In equation form:

D% = 100% (Nc/pr) (28)

where D% is the damage assessment in percent. A comparison of this
estimate with the actual crack growth will suffice as verification.
This linear approach to damage assessment should prove satisfactory for
low cycle fatigue using constant crack growth rates.

The linear prediction of fatigue damage represented by Equation 28
is adequate for loads of a constant stress intensity factor; however, it
is inaccurate for other types of loads. The life of a structure under-
going fatigue, when based on plastic work, is given by Equation 17.

Specifically, for a varying plastic strain per jth fatigue cycle, ¢

pi’
the fraction of fatigue life expended for a structure is given by:
L
LF = 2% (EPJ) (29)
J pu
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where epu is the static plastic strain fracture value at 1/2 cycle. As
the crack growth to failure, s divided by the crack growth in one cycle,

Aaj, results in fatigue cycles to failure, N_, substitution in Equation

f’
17 produces the following relation:

1/k
) (30

28y

i “pu\a
Substitution of tp' into Equation 21 determines the plastic zone dis-
location density for the jth fatigue cycle. Combined with an estimate
of the plastic zone radius from Equation 11 or 12, an approximation of
the internal damping can be made from Equation 13.

Equation 29 is presented as a more accurate and reliable estimation
of fatigue damage than Equation 28. Successful verification of Equation
29 will mc2at the objective of establishing nondestructive evaluation

techniques based on internal damping.
Test Arrangements

The two test arrangements described here are designed to answer the
questions raised above. In so doing, these experiments will verify the

proposed relationship between fatigue and damping for 1018 and 4340 steel.

Fatigue Test. To accomplish the desired goals of relating damping
to crack growth and predicting fatigue life, a series of fatigue tests
is required. These tests monitor crack growth, damping, load, strain,
and number of fatigue cycles.

The fatigue test schematic is shown in Figure 9, the fatigue beam
specimen in Figure 10, and the test procedure is described in detail in
Appendix A. The following description briefly summarizes the fatigue
test procedure.

An MTS test machine applies a cyclic load to a 4340 beam specimen
(100 pounds for damping datum and up to 1,400 pounds for fatigue). The

beam specimen is initially notched and uncracked. The fatigue load has
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a stress ratio of zero and is continuously adjusted to maintain a constant
stress intensity factor during the fatigue process. Crack length data

is collected during data collection cycles from crack propagation gages

on either side of the specimen. The crack length measurement is used to
update the fatigue load setting. The stress intensity factor is calculated

from (Ref 59):

K, = ovma F(a/b) (31)
2
where o = 6M/b
M = moment
b = specimen thickness

and

F(a/b) = 1.122 - 1.4(a/b) + 7.33(a/b)> - 13.08(a/b)>

+ 14.0(a/b)* (32)

is an empirical formula accurate to 0.2 percent for a/b £ 0.6. 1In the
case of a four-point beam, the moment is given by M = 1/2Pla, where P is
the total applied load and 1a is the distance from a knife edge to the
nearest load point. Substituting for o in Equation 31 and solving for
P:

2
b KI

p= 31_ V7a F(a/b) (33)

P of Equation 33 is calculated after every data cycle and a new fatigue
load setting is communicated to the MTS test machine.
A vibration generator attached to the specimen excites the beam in

a range of 5 to 20 Hz around the fundamental frequency, For example,

nl’
if the specimen resonates at 320 Hz, a frequency range from 310 to 330
Hz is swept by the vibration generator. While the beam is being excited,

strain gage data are input to a spectrum analyzer that converts the data
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from the time domain to the frequency domain and then transfers it to
the Lab-Datax computer for damping calculations. The same data also
provide the fundamental frequency of the beam. For each damping data

cycle the following data are collected:

1. Fatigue cycle number, N
2. Fatigue load, P
3. Marximum strain, ¢

4. Minimum strain, & .
min

5. Crack length, a

6. Stress intensity factor, KI

7. Damping decrement, A

8. Transfer function amplitude ratio at w1 TF
The data are saved in a file on disk to be transferred at a later time
to a mainframe for processing and plotting.

All fatigue tests will begin with a 2000 load cycle damping datum
phase. During this phase, approximately 50 damping data cycles will be
performed and the resultant average damping value will be interpreted as
the normal damping state of the uncracked specimen as configured and
mounted in the fixture. The load during this phase will be approximately
100 pounds. The light loading is sufficient to detect minor slippage at
the knife edges and make appropriate adjustments to the clamping bolts.

Fatigue tests of 1018 steel beam specimens are similar to those
described for the 4340 steel specimens. The major difference is in the
fatigue load. For the 1018 steel specimens, the fatigue load is approx-
imately 800 pounds. Also, the load is held constant. Therefore, the
stress intensity factor increases as the crack grows. The stress inten-
sity factor is held constant for the 4340 steel specimens.

Microcracks initiate in the vicinity of a stress concentration as a
consequence of high load stress. High load stress forces dislocations
to pile up on a slip plane. A microcrack is nucleated as a result of

the short-range interactions of a few dislocations at the head of the
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pile. The remaining dislocations are presumed to produce the high stress
concentration needed to force the leading dislocations to form a micro-
crack (Ref 11, 60, 61, 62). In ductile metals, where dislocations are
easily generated, crack nuclei continue to form with increasing amounts
of strain, and these nuclei grow slowly into microcracks that eventually
join to form a macroscopic crack. Elasto-plastic analysis of cracks
often ignore the microcrack phase and directly model crack propagation
with dislocation strips or arrays (Ref 57, 63, 64).

For a cyclic load having a compressive mean stress, microcracks are
prevented from opening, retarding development, and impeding the coalescence
of microcracks into macrocracks. On the other hand, a tensile mean stress
tends to open a microcrack and spur crack development (Ref 60). The
fatigue tests of 4340 steel beams are designed to generate a tensile
mean stress. The microcracks developed in tﬁese specimens remain open,
under a zero stress condition, due to residual plastic stress.

Within the plastic region, elliptical microcracks have displacement
in two modes: opening and shear. Opening displacement spreads and then
closes the microcrack. This mode creates internal damping through energy
loss when the surfaces are in contact. Shear displacement moves one
microcrack surface parallel to the other. Damping is incurred through
the dissipation of heat as the two surfaces rub past one another.

The following assumptions were set forth by Budiansky and O'Connell

(Ref 65), in their analysis of randomly distributed cracks:
1. Microcrack closure effects are ignored.
2. Microcracks have small openings between their opposite faces.
3. Microcrack edges are considered blunt.
4. Small stresses do not produce contact between microcrack faces.
5. Macroscopic incremental stress-strain relationship is linear.

6. General elliptic planform.
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Having a mean tension fatigue stress, microcracks in the 4340 beam
specimens meet the condition of assumption 2. Given the small damping
data cyclic stress (on the order of 500 psi) applied to the specimen
(described in Appendix A), it is reasonable to presume that condition &
is also met. Meeting conditions 2 and 4 suggest that the microcrack
surfaces do not touch and thereby dissipate energy. Without dissipation
of energy, the microcracks cannot contribute to internal damping.

Two alterations to the fatigue test arrangement of Appendix A could
result in microcracks contributing to internal damping. First, the mean
fatigue stress would have to be in a range that would allow the microcrack
surfaces to move relative to one another under a small data collection
cyclic loading. The motion could be shear mode, opening mode, or a com-
bination of the two. Second, the data collection cyclic loading would
have to be large enough to overcome the residual plastic strain holding
the microcracks open and cause the microcrack surfaces to rub against

one another.

Internal Damping Test. Material parameters, required to calculate
dislocation damping in the plastic zone from Equation 27, are determined
experimentally by internal damping tests. This section summarizes the
test arrangement for determining internal damping material parameters.

Physical properties of materials are determined by repeatable exper-
imental testing. TInternal damping, being a physical property, must be
determined by a series of tests for each material of interest. To answer
the question whether Equation 13 accurately models internal damping as a
function of strain and plastic zone and elastic region dislocation densi-
ties, testing of 4340 steel at various levels of strain is required.

Figure 11 is a schematic of the damping test arrangement and Figure
12 shows the damping specimen. Appendix B contains a description of the
test procedure. The following description summarizes this procedure. A
sine load function is applied to the symmetric cantilever beam specimen
furnishing a stress ratio of negative one. An accelerometer measures
the load function while strain gages on the specimen measure the beam
response. The ratio of strain to acceleration at the resonant frequency

of the beam provides a transfer function ratio. From this ratio, internal
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damping for the material may be plotted against strain levels, thus
obtaining plots similar to Figures 2 and 4. The data collected from
these tests will include decrement, A, and strain, €. From data reduc-
tion, the parameters Cl’ C2, and C3 of Equations 14 and 26 are estimated
for later application in refining the fatigue test data reduction.

Material Properties

Prior to performing fatigue and damping tests, testing was done to
determine the mechanical properties of 4340 steel. The chemical composi-
tion, heat treatment, and engineering tensile properties of the SAE 4340
steel used in this investigation are presented in Table 1. The SAE 4340
steel was selected as the test material for several reasons: (1) a sig-
nificant amount of crack growth data had been previously collected, (2)

a small plastic zone on the order of 0.0} to 0.03 inch developed at the
notch, and (3) there was continued usage of the material in applications
with conditions leading to cyclic fatigue. The large amount of crack
growth data available for 4340 steel -allows quick verification of fatigue
test results. Conversely, 1018 steel produces a large plastic zone that
sharply contrasts with 4340 steel.

Testing and subsequent calculations (Ref 66 and 48) were done to
determine the true stress-true strain relationship of the materials.
Figure 13 depicts this relationship and has a strong resemblance to
Figure 6, the true stress-strain curve of 4340 steel used by Feltner and
Morrow (Ref 47). The true stress-plastic strain curve representative of

Figure 13 may be expressed as:
o = k¢ (34)

where the strength coefficient kp = 230.3x103 psi, and the strain hardening
exponent n = 0.0902. Coefficients kp and n were computed using a least
squares technique (Ref 67).

Inserting Equation 21 into Equation 18 produces a second equation

relating stress, o and plastic strain, sp‘
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s = 0(0) + %— aGbl1 - exp(-1/2xe )] (35)

where 6(0) is the stress at zero plastic strain. A simplex algorithm

(Ref 68) was used to fit the data to a curve which resulted in A' =

6.128x106 in.-l, o(0) = 162.8x103 psi, and X = 8.613 assuming a« = 0.8
and the Burger's vector, b = 10—8. The shear modulus is calculated from
(Ref 69):
_ E
¢ = 0% (36

where the elastic modulus has been experimentally determined as

E = 28.0x10° psi and Poisson's ratio is v = 0.29 (Ref 66). Equation 36
produces G = 10.9x106 psi. From Feltner and Morrow (Ref 47) the total
hysteresis energy for static fracture, based on Equation 34, is given
by:

£
w = -PPW (37)

or based on Equation 35,

_ A' 24"
W, = [0(0) + 2~ aGb] € o + 2 aGb| exp( 1/2xspu) 1] (38)

The static test results are summarized in Table 2.
The final preliminary tests determined the critical stress

intensity factor of 4340 steel, K Three compact tension specimens

Ic 1/2

(Ref 70) were tested, producing a KIc = 76.5x103 psi-in.

Fquation 12 and the yield stress given in Table 1, the plastic zone rp

From
would be expected to reach a maximum of 0.016 inches for a specimen

experiencing plane strain conditions. Fquation 27 integrates the dis-

location density and strain functions over volumes of the plastic and

33




elastic beam material. With an elastic volume of about 5.6 in.3 versus

a plastic volume of about 800 x 10-6 in.3, the ratio of plastic to elastic

material is on the order of 150 x 10-6. This ratio suggests a large
plastic zone dislocation density or strain level is required to produce
a measurable internal damping change.

These values, together with the results from the internal damping
tests, will be used in the mathematical model to verify Equations 17,

24, and 27.

TEST RESULTS

The results of the four-point beam fatigue tests, and brief results
of the internal damping tests, are presented here. Detailed results of
the internal damping tests are in Appendix E.

In addition to the dislocation damping discussed previously, an
additional damping mechanism is analyzed for the 4340 steel beam speci-
mens. This mechanism dominates the damping response observed in these

specimens.
Internal Damping Tests

To validate the fatigue test results and mathematical model,
internal damping tests were conducted. This section summarizes the
results described in detail in Appendix E, and is based on the test
procedure presented in Appendix B.

The coefficients associated witn dislocation damping, Cl and CZ’
are used in Equations 13 and 14, and subsequently in Equation 27.
Modeling of these equations is established in Appendix C, step 3.8.
Appendix C is an algorithm for simulating internal damping in prepara-
tion for the mathematical model.

Estimates of material constants are C1 = 54 x 10—3 and C2 = 144 x
10-6. Based on restrictions of the Granato-Liicke equation (Equation 5),
the maximum beam strain during damping data collection is limited to 36

-6

x 10 7, that is, one fourth of C From Figure 14, for a simple-supported

2
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beam vibrating in the fundamental mode, the damping ratio for the maximum
strain is 172 x 10—6. This small amount of damping is difficult to mea-
sure accurately, a point that becomes more apparent in the next section,

which documents the analysis of the four-point beam fatigue tests.
Fatigue Tests

The two materials used in the fatigue tests were 1018 and 4340
steel. The 1018 steel beam specimens were fatigued under a constant
load and an increasing stress intensity factor. The 4340 steel beam
specimens were fatigued under a decreasing load and a constant stress

intensity factor.

4340 Steel Beam Fatigue Plots. Four beam specimens were fatigue
tested in a four-point load arrangement. Figures 15 through 18 show the
plotted crack extension, resonant frequency, and damping ratio data for
each of the specimens. The figures share common peaks in damping and
fluctuations of resonant frequency at approximately 300, 270, and 245
Hz. Since the tests were automated, no observations are available to
explain these phenomene in the data. Due to differences in the initial
tightness of the clamping bolts at the knife edges, the beams began their
tests at different resonant frequencies. The specimen crack lengths
also varied from beam to beam at these frequencies. Because of this, it
does not appear that the fluctuations were due to the specimens them-
selves. One possible explanation is that some part of the test equip-
ment or fixture on the MTS test machine resonates at these frequencies.

All four plots indicate a definite increase in damping as the crack
grows. This upward trend in damping is consistent with the increase in
energy losses in metals with propagating cracks as measured by Charles,
Appl, and Francis (Ref 33). Freudenthal (Ref 71), noting the sharp
increase in damping and fracture that ensued, offered the explanation
that the increase is an expression of the formation and spreading of

macroscopic cracks under considerable local deformation.
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Specimen A. Crack extension, resonant frequency, and damping
ratio data are presented in Figure 15 for this first specimen tested.
Fatigue loading was set at 1250 pounds with a resulting Kave = 26.1 and
Sh =2.16 ksi-in.l/z, where SD is the standard deviation. Due to a pro-
gramming error in the calculation of Equation 32, the stress intensity
factor was not held constant. A decision was made to fail the specimen
while the crack growth was still being tracked by the crack propagation
gages in crder to assess their accuracy. Table 3 summarizes the data at
failure. The crack propagation gage recorded a crack depth of approxi-
mately 0.25 inch at failure, indicating an error on the order of 10 per-
cent. This error is probably associated with the error in measuring the
location of the crack gages on the specimen prior to the start of the

test.

Specimen B. The damping datum was established at a damping
ratio of 460 x 10-6 and the load was initialized at 1250 pounds. Fatigue
test data are shown in Figure 16. The average stress intensity factor
was 34.4 with SD = 1.37 ksi-in.l/z. The average crack growth rate,

(da/dN), over the width of the crack propagation gage was 14.9 x 10-6.

Specimen C. Figure 17 contains the crack extension, resonant
frequency, and damping ratio data. The damping datum was established at

a damping ratio of 460 x 10-6 over 50 data cycles. The fatigue load was

1/2

initialized at 1250 pounds. Kave = 30.5 and SD = 1.91 ksi-in. with

the crack growth rate, (da/dN), at 11.9 x 10_6.

Specimen D. The data from the last test are presented in

Figure 18. The damping was established at a damping ratio of 460 x 10-6

and the load was initialized at 1400 pounds. An average stress intensity

1/2

factor of 36.3 with a standard deviation of 1.48 ksi-in. was produced.
Over the width of the crack gage the crack propagation rate was 17.0 x

1076,
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Past experience with crack propagation gages had produced inconsis-
tent results. The adhesive selected to glue the gages to a specimen
often failed, resulting in erratic crack length data. The adhesive used
on the 4340 steel beam specimens proved very reliable and secured crack

length data within 100th of an inch.

Analysis of Damping Results in 4340 Fatigue Specimens. Results
from the damping tests are applied to the fatigue tests through the esti-
mates of the material-dependent constants of Equation E-3 in Appendix E
and usage of the frequency-dependent damping equation.

The plastic strain in the plastic zone at the fatigue crack tip was
estimated at 400 x 10-6 in./in. for specimens B and C and 500 x 10-6 for
specimen D. This estimate is based on Equation 17 and assumes a constant
plastic zone size. For fatigue specimens B, C, and D the assumption of
a constant plastic zone size is valid for the period of testing when the
crack length was within the crack propagation gage range. Once outside
of this range, erroneous crack length data were received by the control
program and the applied fatigue load did not preserve a constant stress
intensity factor. This small plastic strain, together with the small
plastic zone radius (on the order of 0.003 inch) suggests a small con-
tribution (on the order of 10-6) to the overall internal damping by the
dislocations in the plastic zone.

Figures 15 through 18 clearly indicate a significant increase in
the internal damping as each test progressed. However, the cause of
this increase cannot be associated with the dislocation density of the
plastic zone at the fatigue crack as hypothesized. Another mechanism

must be found to explain this phenomenon.

Alternate Damping Mechanism. The damping behavior observed in
Figures 15 through 18 is not consistent with phenomenon associated with
dislocation density in a plastic zone. For a constant plastic zone radius,
this damping should be relatively constant. Damping in all specimens
increased with increasing crack length, suggesting that damping is related
to the crack length itself. Plots of damping versus maximum beam slope

at the crack (Figures 19 through 21) reveal a straight line. Although
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the slope is different for the three figures, it does suggest that the
cause of the damping is related to the crack length or rotation of the
cracked surface. A relation based on rotation of the beam at the crack

surface has the form:
1
g, e (1/2)

An initial conjecture is that the crack surfaces rub together when the
beam vibrates. Figure 22 models the damping versus beam slope relation.
This model suggests the following boundary equation using a constant,
K’ multiplying the beam slope velocity to represent the crack surface

dissipation function:
EIw"(1/2) = c_(a) w'(1/2) + k_(a) w'(1/2) (39)

This is an empirical relation, adequate for the model in this report,

but requiring additional analysis at some later date.

1018 Steel Beam Fatigue Test Results. Figure 23 is a plot of data
collected from a 1018 steel beam subjected to fatigue loading. The
beam specimen has a shallow increase in damping between 17,500 to 20,000
cycles; however, it is not clear if this change in damping can be attrib-
uted to the fatigue phenomenon or if it is caused by an external effect.
One possibility is that this additional damping is due to the crack
motion, as reflected in Fquation 39 and the coefficient ek’ A scenario
for this would be that the plastic zone is initially small and the crack
surfaces rub as the beam is vibrated to collect damping data. As the
crack grows and the stress intensity factor increases, the beam forms a
plastic hinge at its midpoint. The plastic hinge permanently opens the
crack, not allowing the surfaces to rub and effectively lowers the damp-
ing ratio. Fxcluding the damping increase mentioned above, the overall
damping ratio remains roughly constant up to 25,000 cycles, whereupon it

increases sharply.
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Test results of 1018 and 4340 steel specimens demonstrate two dif-
ferent damping phenomenon. Results from the 1018 steel fatigue tests
are consistent with the analytical approach presented previously in this
report. That is, the damping is relatively stable for a small plastic
zone, and increases rapidly with an expanding plastic zone. To validate
the 1018 steel results and analyze the 4340 steel results, the specimens
must be modeled and crack growth and damping phenomena included in the
model. The questions raised in the Experimental Approach section of
this report will be answered after comparing the fatigue test results
with the model output. Completion of the research objectives are

dependent on these answers.

DYNAMIC MATHEMATICAL MODEL

The purpose of the dynamic mathematical model is to answer the
questions posed in the Experimental Approach section of this report.
The model will be used to validate the technical approach through
analysis of the 1018 and 4340 steel fatigue test results. Analysis of
the 4340 steel results will explain, through the model, the steady

increase in damping that cannot be represented by dislocation phenomena.
Beam Models

The two dynamic mathematical models developed to analyze damping
are based on the Euler-Bernoulli beam equation (Ref 72). These models
are viscously damped with the damping based on a dislocaticn damping
expression, including both strain/amplitude-dependent and frequency-
dependent damping. In addition, the fatigue specimen model simulates
crack growth with a torsional spring, kc(a), that is a function of crack
length, a.

Figures 24 and 25 illustrate models of the four-point beam fatigue
and symmetric cantilever beam damping specimens, respectively. In both
figures, m is the mass of the beam per unit length, E is Young's modulus,
h is the beam height, b is the beam thickness, 1 is the beam length, and

x and z are the beam coordinates. In Figure 24, kke is the torsional
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stiffness of the knife-edge support, kc(a) is the torsional stiffness of
the fatigue crack (as described above), mox is the mass of the exciter,
lex is the distance from the knife-edge support to the exciter, and
Fex(x’t) is the time-dependent forcing function of the exciter. In
Figure 25, ﬁb(t) is the time-dependent acceleration of the base support

for the symmetric cantilever beam.

Symmetric Cantilever Beam Damping Specimen. Appendix F derives the
equation of motion and mass, stiffness, and damping terms for the symmetric
cantilever beam model. Results from the internal damping tests are analyzed
using Equation F-13 from Appendix F. This equation determines the damping

ratio, at resonant frequency, from the beam acceleration and strain.

Four-Point Beam Fatigue Specimen. Appendix G derives the boundary
conditions, equation of motion and mass, stiffness, and damping terms
for the four-point beam fatigue model. Damping data calculations for
the fatigue tests are programmed into the test control computer. These
calculations are based upon Equations F-13 and G-8 in the appendixes.

The following section develops an expression for the frequency-
dependent decrement that must be determined to isolate the fatigue-

induced damping.
Frequency-Dependent Decrement

A simple expression for frequency-dependent decrement, AI, is
provided by Zener (Ref 1, 73) for a beam vibrating in simple harmonic
flexure at a frequency w. According to the Zener thermoelastic theory,

the frequency-dependent decrement for a beam is:

(40)

where 1, the relaxation time for heat flow across a rectangular beam, is

given by:
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and o is the linear expansion coefficient, T is absolute temperature, c
is the specific heat per unit volume, and k is the thermal conductivity.
The decrement given by Equation 40 is maximum at a frequency w = 1/t and
falls off gradually to zero for very high and very low frequencies.

Based on data presented in Table 4 (Ref 74), Figure 26 reflects the
relaxation damping decrement of a beam modeled by Equation 40. The

curve of Figure 26 describes a single relaxation mechanism. There are a
number of such mechanisms, each with its own relaxation time, 1. Through
linearity, these mechanisms can be superimposed to provide the total

damping decrement (Ref 71).
Comparison of Fatigue Test and Mathematical Model

In summary, the steps used to compute the estimated internal
damping for a four-point beam model undergoing fatigue crack growth are
presented in Table 5. In applying these steps to 1018 steel, the fol-
lowing assumptions were made concerning material constants (refer to
Table 6 for a listing of material-dependent constants): (1) use data
previously collected to estimate constants, (2) if immediate data are
unavailable, use data from literature, and (3) if literature data are
unavailable, estimate from similar materials. Refer to Appendixes C and
D for an application of the steps presented in Table 5.

True stress-strain for 1018 steel is modeled by Equation 34 (Figure
27) with kp = 84.2 x 103 psi and n = 0.110. Figure 28 is a plot of the
output from a computer model depicting a 1018 steel beam subjected to
fatigue loading. The model, outlined in Appendix C with data from Table
6, matches the damping characteristics of the fatigue specimen as the
crack grows. The sharp increase in damping, demonstrated by the speci-
men for a large plastic zone, is also exhibited in the computer generated
model.

Figure 29 is a plot of the results of a computer model depicting a
4340 steel beam subjected to fatigue loading. Data for the computer are

shown in Table 6. This plot is compared with Figure 16. The model has
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a nonzero value for the constant ek’ This damping effect allows the
model to accurately reflect the damping conditions of the steel specimen.
Differences are observed at 12,000 and 23,000 cycles where sharp damping
peaks exist in the beam specimen output. An initial impression of these
peaks is that they are due to external causes, as they appear in all the
4340 steel specimens at consistent frequencies.

The mathematical model has many simplifications. The plastic zone
is treated as a square area, where each side is twice the plastic zone
radius in length. This is a simple treatment with room for refinement.

Strain at the crack tip, during damping data collection (Equation 13),

is assumed to be a function of the reduced cross section at the crack,

6M
e = __c°© (41)

0 Ft(h - a)2

This assumption discounts a large stress concentration that occurs at
the crack tip for elastic behavior (Ref 60). The disregard for stress
concentration is deemed acceptable in this instance because the plastic
yielding that occurs within the plastic zone greatly mitigates stress
concentration. To completely ignore the stress concentration is not
realistic, but justifisble for an initial modeling attempt. The ratio
of maximum stress to nominal stress is less than the elastic stress con-
centration factor, and can be interpreted as an elastic-plastic stress

concentration factor, which must be determined experimentally.

CONCLUSIONS

Conclusions about the main objective, that is, the crack
growth/internal damping relationship, and conclusions about the
mathematical model used in the analysis of the damping and fatigue

test results are presented.
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Damping and Fatigue Tests

The major objective to develop a relationship bhetween crack propaga-
tion and internal damping was accomplished. Fatigue tests were conducted
for validation of the relationship. Conclusions based on the test results
are presented and the reliability of the damping measurements made during

the fatigue tests is addressed in the following.

Damping Mechanisms. Observations of fatigue specimens isolated two
distinct damping mechanisms. The first was classified as a dislocation
damping mechanism and was observable in 1018 steel specimens only after
extensive fatigue crack growth under constant load produced a large plas-
tic region. Dislocation damping is well documented (Ref 33 through 43),
and the results of the 1018 steel beam fatigue tests reflect that mecha-
nism. Observation of this mechanism was an objective of the 4340 steel
beam fatigue tests. However, for the 4340 specimens, fatigued under a
constant stress intensity factor, the plastic zone radius was too small
(on the order of 0.003 inch) to furnish a measurable damping increase.
Indeed, any damping increase generated by a plastic zone was obscured by
a second damping mechanism that was observable within a few cycles of
crack initiation. The damping ratio produced by this mechanism is
directly proportional to the maximum beam rotation at the crack loca-
tion. The second damping mechanism was classified as viscous damping
expressed by Equation 39 and was attributed to the rubbing together of
the two crack surfaces as the specimen vibrated.

No explanation is immediately available for the cause of the sharp
peaks appearing in the damping plots of the 4340 steel beam specimens.
Nevertheless, the occurrence of the peaks at consistent frequencies
suggests the source is external to the specimens. This conclusion is
based on the knowledge that each specimen had a different initial
resonant frequency. Knife-edge stiffness is calculated from resonant
frequency, thus all the 4340 beam specimens had different knife-edge
stiffnesses. The crack length and general beam mode shapes are thus
different for each beam at the frequencies where the damping peak

occurs.
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Test Procedures. Results from the symmetric beam damping tests
indicate that the strain gage lead wire contribution to damping is stable
and produces repeatable results that may be treated as an external damping
source. For this reason, lead wire damping is assumed to be part of the

damping datum established for each fatigue test.

Mathematical Model

The mathematical computer model developed to express damping in
materials subject to crack growth is a combination of analytical and
empirical relations. The empirical relations are primarily associated
with the viscous damping observed in the 4340 steel beam specimens.
Deduced as friction between the two crack surfaces, this viscous damping
is repeatable in 4340 steel beam specimens. Another empirical relation,
expressed in Equation 30, is assumed to exist between the torsional stiff-
ness at the crack and the crack length. This relationship closely resem-
bles a moment of inertia expression and gave consistent results for all
four 4340 beam specimens.

The analytical expressions used to model dislocation damping and
plastic strain, that is, Equations 13 and 21, accurately modeled large
damping changes in the 1018 steel specimens. This conclusion reflects
the difficuity in accurately measuring small changes in damping caused
by dislocation damping, while acknowledging the model's credibility for
simulating large damping changes which occurred after many thousands of

fatigue cycles.

RECOMMENDATIONS

Additional testing is required to confirm the mathematical model
and the viscous damping observed in the 4340 beam specimen. Other
materials must be fatigued using both constant load and stress intensity

factor. Greater accuracy is required in the measurement of damping.
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Damping ratios in the 4340 steel beam specimens could be measured to 50
X 10-6. Damping changes on the order of 3 x 10.6 are suggested by the
mathematical model for simulating dislocation multiplication in the
plastic zone.

The mathematical model should be refined to better represent the
plastic zone in a beam. The plastic zone shape, as handled by the model,
is shown in Figure 30. Using a square shape for the plastic zone is a
gross approximation, particularly for the 1018 steel specimens. Under
fatigue loading, the 1018 steel specimens displayed plastic hinges at
the notch location. Figure 31 illustrates a plastic hinge, as observed
in the 1018 steel specimens. The simple simulation used in the mathe-
matical model does not accurately depict the plastic material opposite
the cracked surface. A refinement that accounts for the plastic hinge
effect would directly influence the calculated damping with the plastic
zone and improve the model's accuracy. Along with shape is the question
of strain within the plastic zone during damping data collection. Dis-
location damping is a function of strain, and when the beam is vibrated
to collect damping data, strain within the plastic zone is affected by
both a reduced cross section and plastic flow. The model ignores stress
concentrations at the crack tip on the basis that the concentration is
greatly diminished by the presence of a plastic region (Ref 11). Further
work is required in this area to ascertain what effect each phenomenon
has upon the strain within the plastic zone.

Experimental data should also be collected to determine the elastic-
plastic strain distribution around the notch tip. Equation 41 could
then be refined to include an elastic-plastic stress concentration fac-
tor, reflecting plastic flow at the tip and accurately estimating the
plastic strain in the plastic zone.

Damping has potential as a crack growth monitoring tool where
external damping can be tightly controlled. Isolation from external
effects is possible in a laboratory where conditions are rigidly con-
trolled. Outside a laboratory, changes in external damping will often
overwhelm smaller crack growth induced damping. A technique is needed

to localize or "zoom-in" on crack-induced damping. Examination of
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localized displacements (on the order of 0.5 microns) is possible with
the Sharpe technique (Ref 75). This technique also has the advantage of

eliminating strain gages and their affiliated wires and damping affects.
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LIST OF SYMBOLS

§(x-8)

> > P
=0

=g
=0

Ii
AK

Linear expansion roefficient and constant
Material-dependent, crack growth rate constant
Unit impulse or delta function at the location §

Total decrement, A, + AI

H
Average specific damping capacity

Average corrected total decrement, Z; + E;

External damping

Amplitude-dependent decrement

Povolo's corrected amplitude-dependent decrement

Average amplitude-dependent decrement

Average Povolo's corrected amplitude-dependent decrement
Frequency-dependent decrement

Average corrected frequency-dependent decrement

Frequency-dependent decrement for the ith mode

Difference between the maximum and minimum values of the
stress intensity factor during fatigue cycle, Kma - Kmin

x
Internal damping due to plastic strain
4(1-\))/1:2

Energy dissipated per cycle in a volume element

Damping decrement for beam specimen with no sets of
wires removed

Damping decrement with one set of strain gage wires removed
Damping decrement with two sets of strain gage wires removed
Damping decrement with three sets of wires removed

Damping decrement with all strain gage wires removed
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Damping decrement of ith mode with all wires removed
Crack growth during jth fatigue cycle

Cottrell misfit factor

Fatigue cycle elastic strain at maximum load

Fatigue cycle strain at minimum load

Plastic strain

Plastic strain per cycle

Plastic strain for jth fatigue cycle

Static plastic strain fracture value at 1/2 cycle
Ultimate strain for static fracture

Critical strain above which plastic strain occurs
Average value of the cyclic plastic-strain range
ln(Ao/Ai)’ true strain

Strain in beam at location X

Cyclic strain amplitude

Viscous damping ratio for the ith mode, Ci = Ci/Cci
Phase angle, 9 » /2 as w w,

By/ A

Eigenvalue of ith mode of vibrating beam

Total length of movable dislocation line per unit volume
(dislocation density)

Dislocation density in elastic region
Immobile dislocation density
Dislocation density in plastic zone
Poisson's ratio

Location of unit impulse function

Density
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Nominal outer fiber stress
Maximum cyclic stress
Stress constant
P/Ai’ true strain
Ultimate stress for static fracture
Stress at zero plastic strain
, , 2 2
Relaxation time for heat flow across a beam, t = h'c/nk

Orientation factor (0.5 and 0.32 for b.c.c. and f.c.c.,
respectively)

Characteristic shape function associated with ith mode
of vibrating beam

. . . th s . ,
Derivative of i characteristic shape function with
respect to x, describes slope of beam

. . .th o .
Second derivative of i characteristic shape function
with respect to x, describes curvature of beam

Strain independent probability for the remobilization of
immobile dislocations

Strength parameter
Frequency of forcing function
Resonant frequency of the ith mode, w, = (Ki/Mi)l/z
Fundamental beam frequency
Orientation factor
Crack length
Initial crack length
.th .
Crack length after i -1 fatigue cycle
.th ,
Crack length after j fatigue cycle
Dimensionless constant and for the G-L Theory A = 'npb2
Instantaneous cross-sectional area under a given load

Original cross-sectional area before any load is applied
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c
eq
c(x)

dw

D%

F(a/b)

ex

1/%bKf

Material constant

Burger's vector and beam thickness
Material temperature-dependent term

Amplitude scaling factor associated with ith mode of
vibrating beam

Material constant relating crack length to beam
torsional stiffness at crack

Material constant; for the G-I Theory C = 2Gb2/m(1-v);
and for the Manson-Coffin law, the ductility exponent

3
QAOLN /11Lc
1
Ke a/LC
4 2
QAOLC Bw/m"C
. , .th
Generalized damping of i~ mode
Generalized critical damping of ith mode
Specific heat per unit volume
Crack damping coefficient
Equivalent viscous damping
Beam damping coefficient
, , , _ 1/2
Dislocation cell size, d = K/A
Plastic energy absorbed per cycle
Fatigue life damage assessment in percent, 100% (Nc/pr)
Young's modulus of beam material
Exponential integral function of first order
Exponential integral function
Constant of order 1
2 3 4
1.122 - 1.4(a/b) + 7.33(a/b)” - 13.08(a/b)” + 14.0(a/b)

Amplitude scaling factor of excliter forcing function
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max

min

LF

L

Exciter forcing function

Shear modulus

Height of beam

Mode number

Moment of inertia of beam, I = th3/12

Fatigue cycle number

Thermal conductivity; for Manson-Coffin law, 1/C

Orientation and anisotropy parameter and material
constant, K = 20 for Fe

Average stress intensity factor over fatigue test

Torsional spring stiffness of crack

Generalized stiffness of ith mode

Stress intensity factor

Critical stress intensity factor

Torsional spring stiffness of knife-edge support

Maximum value of stress intensity factor during fatigue cycle
Minimum value of stress intensity factor during fatigue cycle
Strength coefficient

Length of beam

Mobile dislocation density

Fatigue specimen distance from knife edge to loading point
Impurities loop length

Effective length of dislocation loop

Distance from knife-edge support to exciter

Fraction of fatigue life expended

Network loop length

Hysteresis energy exponnrt
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m(x)

M(x)

Moment on beam section
Moment due to crack
th

Generalized mass of i  mode
Moment due to knife-edge support
Mass per unit length of beam
Moment along beam, M(x) = EI B, ¢i"(x)
Strain hardening exponent
Fatigue cycle number
Number of fatigue cycles completed
Number of cycles to complete fracture
Predicted number of cycles to complete fracture
Number of cycles in a stage of fatigue life
Fatigue or static load

. , ,th
Generalized coordinate of i mode

First derivative of generalized coordinate with respect
to time

Second derivative of generalized coordinate with respect
to time

Characteristic shape function ratio of nonzero constants
Plastic zone radius

Dislocation mean free path

Standard deviation

Time variable or thickness of beam
Absolute temperature

Transfer function amplitude ratio at w4

Integrated plastic work expended in the plastic zone or
peak potential energy per cycle

Rate of immobilization of mobile dislocations or peak
potential energy per cycle of i mode

Specimen volume




Elastic region volume

Plastic zone volume

Amplitude scaling factor for beam support displacement
Time~dependent displacement of beam support
Time-dependent acceleration of beam support

Energy dissipated per cycle

Energy dissipated per cycle of ith mode

Total hysteresis energy to cyclic failure

Total hysteresis energy to static failure

Time- and location-dependent displacement of beam
Time- and location-dependent velocity of beam

Time- and location-dependent acceleration of beam
Derivative of w(x,t) with respect to x

Second derivative of w(x,t) with respect to x
Third derivative of w(x,t) with respect to x

Peak potential energy per cycle in a volume element
Coordinate of longitudinal axis of beam

Known location on beam

Forcing function for generalized coordinate equation of
mot ion

Displacement function for ith generalized coordinate
equation of motion

A@Rlitude scaling factor for displacement function of
i” mode
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Table 1.

Item

Characteristics of SAE 4340 Steel

R -

Description

Material

. Composition

Heat Treatment

Engineering
Tensile Properties

Table 2.

Parameters

u

- pu

n

SAE 4340 Steel

C - 0.40, Mn - 0.81, P - 0.018,
S -0.019, Si - 0.25, Ni - 1.73,
Cr - 0.87, Mo - 0.24

The fatigue, tension, compact tension and
damping specimens were austenitized at
1525°F in a neutral salt bath, quenched
in still oil and rcom temperature and
tempered at 1100°F for 2 hours.

Average tensile properties for three
specimens are given bhelow:

Engineering 0.2% offset,

yield strength (psi) - 141,300
Engineering ultimate
strength (psi) - 150,200

Hardness Rochkwell C - 37

Summary of Static Test Results

Units Values
psi 225,000

in./in. 0.748
lb-in./in.3 (Equation 37) 153,800
lh-in./in.3 (Fquaticn 38} | 124,000
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Table 3.

Fatigue Specimens at Failure

. Load at Failure, | Crack Length, Es?lmated Outer EstlmaFed Stress
Specimen P (1b) a (in.) Fiber Stress, Intensity Faiygr,
: o (ksi) KI (ksi-in. )
A 1240 0.277 50.1 80.3
B 690 0.393 14.4 71.2
C 260 0.413 11.1 78.6
D 345 0.402 11.5 90.1
Table 4. Values Used in Equation 40 to Obtain
the Curve Shown in Figure 26
(Ref 74) for Steel
Parameters Units Values
- - s
a strain/°F 6.7 x 10
6
E psi 29 x 10
c psi/°F 245
k 1b/sec °F 6.5
h in. 0.125
T °R 530
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Table 5. Computation of Internal Damping in Fatigue Model

Step Drescription

1 Define material and crack growth constants

2 Repeat step 2 for fatigue cycle j =1 to N

2.1 Using the crack growth constant, a , and crack length from

-1 gompute the crack length
aj (Equations 31 and G-10)

the previous fatigue cycle, a
for the current fatigue cycle

2.2 From known values of the static plastic strain fracture
value, €_ , the final crack length, a_, and the ductility
exponent; C, compute the estimeted plastic strainm, €_, in
the current fatigue cycle (Equation 30)

2.3 Compute the fraction of fatigue life expended, LF
(Equation 29)

2.4 Determine the plastic zone radius, r T for the current
fatigue cycle (Equation 11 or 12) p

2.5 Calculate the crack torsional stiffness, k ,, for the
current fatigue cycle (Equation G-12)

2.6 With the knife-edge stiffness, kk , determine the
eigenvalue, k,, eigenvector, ¢ (X)), and resonant fre-
quency, w,, of the fundamental mode of vibration
(Equation G-4)

2.7 Determine amplitude scaling factor, B1 (Equation F-8)

1]
2.8 Calculate plastic zone dislocation density (Equation 21)
2.9 Compute the average amplitude-dependent damping, K;j’ from

the vibration strain level, €5 (Equation 13)

2.10 Determine the frequency-dependent damping, Aj (Equation
F-16)

3 stop.
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Table 6.

Material-Dependent Constanis for 1018 and 4340 Steel

Constant Description Units 1018 4340

Ai Dislocation density to plastic disl/in.2 2.41 x 106 6.13 x 106
strain coefficient

bc Crack length to beam torsional 1b/in. 124 x 103 124 x 103
stiffness coefficieat

c Manson-Coffin ductility exponent 646 x 10-3 690 x 10-3

C1 Internal damping coefficient 50 x 10-3 50 x 10-3

C2 Internal damping coefficient in. /in. 150 x 10-6 100 x 10-6

c Specific heat per unit volume psi/°F 245 245

EI Young's modulus x beam moment lb/in.2 300 x 10° 300 x 10°
of inertia

k Thermal conductivity 6.5 6.5

] Expansion coefficient in./in.°F | 6.7 x 10| 6.7 x 107

o Crack growth rate coefficient in.7/1b4 -1 16 x 10-24 9.66 x 10-24

cycle
€ u Static plastic fracture value in./in. 550 x 10-3 748 x 10-3
P at 1/2 cycle
. . , ; , , 2 8 8

AO Dislocation density for plastic disl/in. 1 x 10 1 x 10
strain equal to zero

oy Yield stress psi 62 x 103 144 x 103

X Strain independent probability 10.7 8.61

for the remobilization of
immobile dislocations




Figure 1. Edge dislocation.
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Figure 3. Formation of a microcrack by a combination of (three)
dislocations (from Yokobori, Ref 11).
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continued dimple
rupture (or cieavage)

void coalescence
tirst crack
advance

void nucteation
and growth

applied load P

stretch zone
development

plastic zone
formation

tatique crack —_—
lengtha,

— 0y —=

Figure B. Successive stages of ductile
failure (from Blauel, Ref 12).
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Appendix A

FATIGUE TEST PROCEDURE

This appendix presents a detailed description of the procedure used

to fatigue test 1018 and 4340 steel beam specimens.

TEST EQUIPMENT

Table A-1 contains a list of equipment used in the fatigue test.
Refer to Figure 9 in the main text of this report for a general arrange-
ment of the equipment listed in Table A-1.

A vibration generator excites a fatigue specimen to collect strain
and force data used in the calculation of internal damping for the beam.
An impedance head located between the vibration generator and specimen
provides the force data for the damping calculation. Three strain gages
are attached to the specimen (see Figure 10). These gages provide strain
measurements during fatigue loading and vibration generator excitation.
The specimen is vibrated at a frequency selected via computer control on
the frequency synthesizer. The frequency synthesizer output signal is
boosted by a power amplifier to provide strains of measurable amplitude.

The Lab-Datax Computer controls the fatigue load of the MTS test
machine and performs the calculations to determine internal damping.
Crack propagation gages connected to an analog to digital port on the
computer monitor the fatigue crack length that the computer uses to
maintain a constant stress intensity factor. The computer also controls
the number of fatigue cycles between damping data cycles and the frequency

range selected on the frequency synthesizer.




Table A-1. Fatigue Test Equipment

1 - Data Translation Lab-Datax Computer w/Hard Disk Drive, D/A
Converter, and A/D Converter

1 - Scientific Atlanta Model SD375 Spectrum Analyzer
1 - Wilcoxon Research Model F5B Vibration Generator

1 - Wilcoxon Research Model Z12 Impedance Head

1 - Accelerometer - Force Amplifier Unit

1 - Validyne Model MC1-3 Amplifier Enclosure

2 - Validyne Model SG71 Strain Gage Amplifier

1 - Hewlett Packard Model 3325A Frequency Synthesizer

1 - Hewlett Packard Model 3495A Scanner w/Optional 001 Relay
Assembly

1 - Hewlett Packard Model 467A Power Amplifier
1 - MTS Test Machine

2 - Micro-Measurements Model TK-09-CPA01-005 Crack Propagation
Gage

3 - Micro-Measurements Model EA-06-125BZ-350 Strain Gage

The spectrum analyzer collects strain and force data and converts
them to a transfer function ratio. The transfer function is transferred
to the computer where the damping calculation is made and the frequency
range selection is updated. Strain input to the spectrum analyzer is

under computer control with the switching function handled by the scanner.

SPECIMENS

The 1018 or 4340 steel beam specimen, shown in Figure 10, is mounted
in the MTS test machine using a knife-edge support fixture. The specimen
is initially uncracked, with a small notch at its midpoint. A four-point
load is applied to the beam by the hydraulic ram of the MTS test machine.

A-2




The initial fatigue load, ranging from 1,250 to 1,400 pounds for the
four specimens tested, produce a maximum stress in the notch of 160 ksi
and a maximum stress intensity factor of 36 ksi-in.llz.

For the heat treatment used, the 4340 steel has a yield strength
of 141 ksi and a critical stress intensity factor of 77 ksi-in.l/z.
With the specimen fatigued at a constant stress intensity factor, the
maximum plastic radius is estimated at 3.5 x 10-3 inches, as calculated
from Equation 12 in the main text of this report.

The 1018 steel was untreated, having a yield strength of 62 ksi.
The 1018 steel is too soft to obtain a valid critical stress intensity
factor and no attempt was made to determine one. At 800 pounds, the
uncracked specimen has a maximum plastic radius estimated at 7.2 x 10.3

inches, as calculated from Equation 12.

TEST PROCEDURE

After mounting the specimen in the fixture on the MTS test machine,
the Lab-Datax computer program is initialized. The initialization pro-
cess sets the number of fatigue cycles, crack gage parameters,and exciter
frequency range. After initializing the system, 2,000 load cycles, 100
pounds each, are applied to the beam specimen. This series of load cycles
is used to establish a damping datum for the uncracked specimen.

For each load cycle, maximum strain and load are saved on disk by
the computer. After each set of forty load cycles, the computer program
executes a damping data cycle. A damping data cycle begins when the
frequency synthesizer is set to sweep a range of frequencies starting 10
Hz below and ending 10 Hz above the fundamental resonant frequency of
the specimen. As the vibration generator sweeps the frequency range,
exciting the specimen, strain gage and force transducer data are trans-
ferred to the spectrum analyzer. These data are transformed into a
transfer function consisting of two components: real and imaginary.

Data from the real component of the strain-force transfer function are
interpreted in terms of the phase shift between the input forcing func-
tion and output strain. The damping ratio, &, may be calculated from




the real component after determining the frequencies of minimum and

maximum magnitudes, f. and f2, respectively, using the following for-

1
mula,

g = ——5—5 (A-1)

Equation A-1 was not used for calculating the damping ratio within the
computer program because the term f22 - fl2 is a small difference between
large numbers and has poor accuracy.

A better technique for measuring damping, during steady-state vibra-
tion, is to measure the maximum amplitude of the imaginary component of
the transfer function, TF

Inverting TF and dividing by two

I,max’ I,max
is the equivalent of Equation F-13 in Appendix F, which is equal to the
damping ratio. TFI,max occurs .4t the resonant frequency of the beam,
fr' Steady-state vibration was selected instead of using a ring-down
technique because the damping ratio changes with vibration amplitude as
the specimen rings down.

A correction factor must be included in the TFI,max calculation.
The spectrum analyzer collects data while the synthesizer sweeps discrete
frequencies, resulting in an averaged transfer function, rather than the
true value at each discrete frequency. The correction factor is the
inverse of the number of data sets collected per frequency sweep.

After establishing the damping datum, the computer applies the
full fatigue load to the specimen. As before, the fatigue load is
cycled forty times between damping data collection cycles. During the
load cycle, crack length measurements are made, and the fatigue load is
adjusted to maintain a constant stress intensity factor. This procedure
continues until the crack passes beyond the crack propagation gages. At
this point, feedback from the crack propagation gages indicates a constant
crack length and the system produces a constant fatigue load through the

remainder of the test.
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NOISE

The principal sources of noise in the fatigue and damping tests are
fluorescent lights and electomagnetic fields from vibration generators.
In the case of fluorescent lights, the spectrum analyzer filters out the
noise occurring at 60 and 120 Hz. For the vibration generators, tests
showed there were electomagnetic effects only when the strain gage wires
were in direct contact with the generator. During the fatigue and damping
tests, care was taken to assure that the strain gage wires never came

into direct contact with a vibration generator.




Appendix B

DAMPING TEST PROCEDURE

This appendix describes the procedure used to collect damping data

from 4340 steel symmetrical cantilever beam specimens.

TEST EQUIPMENT

Table B-1 contains a list of the equipment used to conduct the

damping tests. Refer to Figure 11 in the main text of this report for a

schematic of the test equipment.

Table B-1. Damping Test Equipment

1 - Scientific Atlanta Model SD375 Spectrum Analyzer
1 - Validyne Model MC1-3 Amplifier Enclosure

2 - Validyne Modei SG71 Strain Gage Amplifier

1 - Hewlett Packard Model 3325A Frequency Synthesizer
1 - Hewlett Packard Model 467A Power Amplifier

1 - MB Electronics Model PM-50 Shaketable

4 - Micro-Measurements Model EA-06-125BZ-350 Strain Gage

The frequency synthesizer 1s set to operate the shaketable at the
resonant frequency of the symmetric cantilever beam damping specimen.
Output from a strain gage and accelerometer are transmitted to the

spectrum analyzer where the data are transformed into a transfer
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function. The amplitude of the transfer function is read from the
analyzer and converted to a damping ratio using Equation F-13 in
Appendix F.

Amplitude of vibration is adjusted through the power amplifier.
At each setting, the maximum cyclic strain is read from the spectrum

analyzer.

SPECIMEN

Figure 12 in the main text illustrates the symmetric cantilever
beam specimen used in the damping tests. The beam material is 4340

steel that has been heat treated to 150 ksi yield strength.

TEST PROCEDURE

A damping specimen is mounted on the shaketable. The amplitude of
vibration is initialized to a low level and the frequency synthesizer is
adjusted to the fundamental resonant frequency of the specimen, fr
From the spectrum analyzer, the amplitudes of maximum cyclic strain, £y

and acceleration, are read. The ratio of a. to €, is a transfer

%o 0 0
function. To pinpoint the exact resonant frequency and its associated
damping ratio, strain and acceleration data are collected from frequencies
0.05 Hz above and below fr' Interpolation is used on these three data
points to compute the beam's damping ratio. The damping interpolation
process is based on fitting the three data points to a curve generated
by Eguation F-11.

The above procedure is repeated for the second and third modes of
the specimen. Having completed the damping data collection for the first
three modes of the specimen, at the selected strain levels, the amplitude

of vibration is increased and the procedure repeated.
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Appendix C

ALGORITHM FOR MODELING INTERNAIL DAMPING FROM CRACK GROWTH

The internal damping of a beam undergoing fatigue crack growth is
calculated based on an estimation of the plastic zone size and material
dependent constants related to crack growth rate and internal damping.
The following algorithm is used to calculate the internal damping of a
four-point beam with a propagating crack.

STEP 1. Input material and crack growth constants

a, Initial crack length (in.)

Ai Dislocation density coefficient (disl/in.z)
ac Final crack length (in.)

a Linear expansion coefficient (in./in./°F)
bC Material constant relating crack length to

torsional stiffness (1b-in.)

C Manson-Coffin ductility exponent

C1 Internal damping coefficient

C2 Internal damping coefficient (in./in.)

c Specific heat per unit volume (psi/°F)

X Strain sindependent probability for the
remobilization of immobile dislocations

E Young's modulus (psi)

EI Young's modulus x moment of inertia (lb—in.z)

epu Static plastic fracture value at 1/2 cycle
(in./in.)

€5 Maximum strain in beam during damping data
collection (in./in.)

a Crack growth rate constant based on dislocation

theory of crack growth (in.7/1b4~cycle)

c-1




ke

ex

STEP 3.

STEP

f(a/h) =

Beam height (in.)

Thermal conductivity (lb/sec-°F)

Torsional stiffness at knife-edge support
{(1b-in.)

Location of exciter relative to knife-edge
support (in.)

Location of load relative to knife-edge
support (in.)

Dislocation density for ep =0 (disl/in.z)
Mass of beam per unit length (slug/in.)
Mass of exciter and counterweight (slug)
Fatigue load applied to beam (1b)

Yield stress (psi)

Initialize variables

=0., life expended variable

= 4, crack length

=1, fatigue cycle counter

hzc

;E;’ relaxation time for heat flow

while (aold <= af)
3.1 Calculate crack length for current cycle based on
janew da _ -
i = @
10 Kp (&)

Begin by calculating the stress intensity factor
using an empirical formula

1.122 - 1.4¢a/h) + 7.33(a/h)% - 13.08(a/h)> + 14.0(a/m)",

or




f£(a/h) = (tan(¢))1/2 0.923 + 0.199(1 - simp)4
B ¥ cosy ’
= ra
where ¢ = 7h"

kc = bc (h/a)3 torsional stiffness at crack

Rotation of beam at knife-edge support

(2EI + 1 k) 1 P
0 = - ac’ "a
+EI (kke + kc)

Nominal bending moment between load points

Mnom =1/2 1a p - kke e,

6 Mnom
g = , nominal bending stress
nom 2

KI = 9 om vma f(a/h), stress intensity factor.

STEP 3.1.1 Assume a value for a
new

STEP 3.1.2 Use Newton-Raphson Iteration for the ith

iteration of an

ew
anew da
R = f A = a, residual amount
8%1a Ky (@)
R' = ——Z~*L~——y slope of function
i
K. (a )
I new

a it1=a i -R/R', 1+15%iteration of a_ .
new new new

Step 3.1 requires numerical integration and Newton-Raphson
iteration. This case has one equation and one unknown and
should not require extensive computing.

STEP 3.2 Sum the new value of life expended

Aa = a -

a .
new old’ incremental crack growth




L. (%3) , plastic strain
p pu lag
3
LF += EE—’ specimen is loaded on upstroke only

pu

STEP 3.3 Compute new plastic zone size

STEP 3.4 Calculate new torsional stiffness at crack
3
kc = bc (h/a)”.

STEP 3.5 Compute beam fundamental mode characteristics
including eigenvalue, k; eigenvector, ¢(x); and resonant
frequency, w. The six unknowns, k; four from ¢(x): A, B,
C, and D; and w, are computed from the four boundary
conditions:

w(0) = 0, deflection at knife edge is
zero

Elw'"(0) = kkew'(O), moment at knife edge is equal
to the torsional stiffness x

slope

EIw'(1/2) = kcw'(l/Z), moment at crack is equal to
the torsional stiffness x
slope

w'''(1/2) =0, shear at crack is zero.

Frequency equation (ignoring the small amount of damping):

2 -
w Mi - Ki =0,

where

=
n

! 2
. [0 EI[¢,"(0)]° dx,

and

=
l

1 2 2
i " [0¢1 (x)m(x) dx + ¢, (lex)mex.
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Step 3.5 requires Newton-Raphson iteration to solve the six
nonlinear equations for the six unknowns. In addition,
numerical integration is needed to calculate the generalized
mass and stiffness. For the initial cycle, this is a time
consuming process and will require 50 to 100 iterations.
Subsequent cycles should have sufficient!y small changes in
the variables to require less than ten iterations.

STEP 3.6 Determine amplitude scaling factor

2 80
B= g,
he” ¢"(1/2)
$(x) = B ¢(x), scale eigenvector accordingly.

STEP 3.7 Calculate plastic zone dislocation density

U

A = At exp(-1/2xe )] + Ajexp(-1/2xe ).

STEP 3.8 Compute average amplitude-dependent damping ratio

=C _ 2.c 2.c 2
AH = [Ae [e £ BH(s)dV + Ap Ip £ BH(s)dV]/f g dv

Step 3.8 has several numerical integration computations and
computes the exponential integral function inside an
integral. This is a time constming process and, along with
step 3.5, will determine the overall program runtime.

STEP 3.9 Compute frequency-dependent damping ratio

- 2na2ET wT

1 c 1+ wZTZ

A

STEP 3.10 Sum average amplitude- and frequency-dependent
damping

STEP 3.11 Output results for (j % 100) = 0
Fatigue cycle number, ]

Fatigue crack length, 8 ow




Stress intensity factor, KI

Torsional stiffness at crack, kc

Fraction of life expended, LF

Plastic zone size, rp

Plastic zone strain, sp

Resonant frequency, @

Average amplitude-dependent damping ratio, KH
Frequency-dependent damping ratio, AI

Total damping ratio, A

STEP 3.12 Increment fatigue cycle councer

j+H

a =a_ , reset crack length variable.
old new

STEP 4. stop
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MATHEMATTCAL COMPUTER MODEL LISTING
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/* <p> d:\lc\header\ */

/t AR ER R AR TR AR AR N AR AR AN AR A RN AR AT AN RN RN AR ARAN AR AN AN AR NN RT A AN N

NAME

dmp_crck.exe.....coianennnn calculate internal damping for a beam
undergoing fatigue crack growth

SYNOPSIS

dmp_crck <data filename> [data plot filename] execute program
dmp_crck with input data provided via a
data file

data filename file containing input data of beam and
material characteristics

data plot filename file containing output data for DISSPLA
plots on PRIME
DESCRIPTION

The internal damping of a beam undergoing fatigue crack growth is
calculated based on an estimation of the plastic zone size and
material dependent constants reltated to crack growth rate and
internal damping. The following algorithm is used to calculate
the internal damping of a four-point beam with a propagating
crack.

STEP 1. Input material and crack growth constants

a0 = initial crack length (in).

a_dist = dislocation density coefficient (dist/in"2).

a_final = final crack length (in).

alpha = linear expansion coefficient (in/in/xF).

b_crack = material constant relating crack length to
torsional stiffness (lb-in).

c = Manson-Coffin ductility exponent.

c_1 = internal damping coefficient.

c 2 = internal damping coefficient (in/in).

c_heat = specific heat per unit volume (psi/xF)

chi = strain independent probability for the
remobilization of immobile dislocations.

delta_ext = damping ratio due to external source

e = Young's modulus (psi).

ei = Young's modulus x moment of inertia (lb-in"2).

n_max = maximum strain in beam during damping data
collection (in/in).

n_ult = static plastic fracture value at 1/2 cycle
(in/in).

g_check = minimum crack growth before updating
eigenvector results (in).

growth_rate = crack growth rate constant based on
dislocation theory of crack growth
(in"7/lb 4-cycle).

h = beam height {in).

k = thermal conductivity (lb/sec-xF)

k_knife_edge = torsional stiffness at knife-edge support
(lb-in).

{ = beam length

Lambda_0 = dislocatin density for n_p = 0 (disl/in"2).

L_exciter = location of exciter relative to knife-edge
support (in).

L_load = location of load retative to knife-edge
support (in).

m_beam = mass of beam per unit length (slug/inch).

m_exciter = mass of exciter and counterweight (slug).

P = fatigue load applied to beam (lb).

e yield = yield stress (psi).

slope_factor = constant relating beam slope and damping.

temperature = ambient temperature of specimen (xF)




STEP 2. Initialize variables

a_old = a_0 crack length

j =1 fatigue cycle counter

life = 0. Llife expended variable

tau = h"2*c_heat/c"2*k relaxation parameter

STEP 3. while a_last <= a_final
STEP 3.1 Calculate crack length for current cycle based on
a_new
(da/ki"4) = growth_rate.
a_old

Begin by calculating the stress intensity factor
using an empirical formula

fash) = 1.122 - 1.4*(a/h) + 7.33*(a/h)"2 -
13.08%(ash)"3 + 14%(a/h)74,

or

f(a/h)

L]

dsgrt(tan(psi)/psi)*
(.923 + .199*(1 - sin(psi)) 4/cos(psi),

where psi = c*a/(2*h)

k_crack = b_crack*(h/a)"'3 torsional stiffness
at crack

Rotation of beam at knife-edge support

theta = (2%*ei + |_load*k_crack)*l_load*p/
(4*ei*(k_knife_edge + k_crack)

Nominal bending moment between load points
moment = .5*l_load*p - k_knife_edge*theta
e_nominal = é6*moment/h”2 nominal bending stress
ki = e_nominal*dsqrt(c*a)*f(a/h) stress intensity
factor
STEP 3.1.1 Assume a value for afjl(0]
STEP 3.1.2 Use Newton-Raphson Interation with
a_new(i-1]
residual = (da/(ki(a))"4) - growth_rate,
a_old
slope = 1/(ki(a_new(i-1]1))74,
a_new[i) = a_old{i-1] - residual/slope.
This step requires numerical integration and Newton-Raphson
iteration. This case has one equation and one unknown and should
not require extensive computing.
STEP 3.2 Sum the new value of life expended
delta_a = a_new - a_old incremental crack growth
n_p = n_ult*(a_new/a_final)'c¢ plastic strain
life += 2*n_p/n_ult include 2 only if loading occurs on
both up and dewn stroke of piston
STEP 3.3 Compute new plastic zone size

r_plastic = (ki/e_yield) 2/(c*6),




where ki is computed from a_new.
STEP 3.4 Calculate new torsional stiffness at crack
k_crack = b_crack*(h/a_new)"3

STEP 3.5 Compute beam fundamental mode characteristics
including eigenvalue, kappa, eigenvector, phi(x), and
resonant frequency, omega. The six unknowns, kappa, four
from phi(x) and omega, are computed from the four boundary
conditions:

w(0) = 0 deflection at knife_edge is zero

ei*w"(0) = k_knife_edge*w'(0) moment at knife-edge is
equal to the torsional
stiffness x slope

ei*w"(l/2) = k_crack*w'(l/2) moment at crack is equal
to the torsional stiffness
x slope

W' (l/2) = 0 shear at crack is zero
Frequency equation (ignoring the small amount of damping):
omega“2*m_general - k_general = 0
where
L
m_general = JO m_beam*phi(x)"2 dx + phi(l_exciter) 2*m_exciter

and
L
k_general = ei [phi"(x)] 2 dx.
0

This step requires Newton-Raphson iteration to solve the six
nonlinear equations for the six unknowns. In addition, numerical
integration is needed to calculate the generalized mass and
stiffness. For the initial cycle, this is a time consuming
process and will require 50 to 100 iterations. Subsequent cycles
should have sufficiently small changes in the variables to require
less than ten iterations.

STEP 3.6 Determine amplitude scaling factor

scale_factor = 2*n_max/(h*kappa 2*phi"(1/2))
phi(x) = scale_factor*phi(x) scale eigenvector accordingly

STEP 3.7 Calculate plastic zone dislocation density

lambda_p = ( (a_disl/chi)*(1-exp(.5*chi*n_p) +
dsqrt(lambda_0)*exp(.5*chi*n_p) )"2

STEP 3.8 Compute average amplitude-dependent damping ratio

delta_h = ( lambda_p'J n(x,z) 2*theta_h(n(x,z)) dv +
p

lambda_O*I n(x,z) 2*theta_h(n(x,2)) dv )/
e

J n{x,z)°2 dv

where the functions n(x,z) and theta_h(n(x,z)) are defined by




n(x,z) = z*scale_factor*kappa 2*phi*(x)
theta_h(n(x,z)) = c_1*(c_2/n(x,z)) 2*eil(c_2/n(x,2))

and ei1() is the exponential integral function.

This step has several numerical integration computations and
computes the exponential integral function inside an integral.
This is a time consuming process and along with step 3.6 will
determine the overall program runtime.

STEP 3.9 Compute frequency dependent damping ratio

delta_i = (2*c*alpha 2*e*temperature)/c_heat*
omega*tau/(1 + (omega*tau)2)

STEP 3.10 Sum average amplitude- and frequency dependent
damping

delta = delta_i + deita_h
STEP 3.11 Output results for j%100 == 0:

fatigue cycle number, j

fatigue crack length, a_new

stress intensity factor, ki

torsional stiffness at crack, k_crack
fraction of life expended, life

plastic zone size, r_plastic

plastic zone strain, n_p

resonant frequency, omega

average amplitude-dependent damping ratio, delta_h
frequency dependent damping ratio, delta_i
total damping ratio, delta

STEP 4. stop

FUNCTIONS USED

beam_mode........ ceeennaenn compute beam eigenvector, eigenvalue
and frequency
crack_integral............. compute crack length residual
dmodal................he .derivative of beam characteristic
equation coefficients
dadn......oivenvnninn, .-.change in crack length as a function of
fatigue cycle number
data plot....... tecesencnes output to file data for DISSPLA plot
data print................. output to screen data printout
ddphi...ccoiviiniinnnann.as second derivative of beam

characteristic equation with respect
to the beam coordinate

dexp...cieiiiiiiiian. ....Lattice SSP exponential function
adsqrt...c.eeciniienainnnnn. .Lattice SSP square root function
exb_limit..... Ceereeaetanan starting Limit for second integration
of multiple integration
eze_limit....cooeiuiiinninnn ending limit for second integration of

multiple integration
strain2............c.......Strain squared function

n2_theta h................. strain squared, amplitude dependent
damping function

foeevenns . stress intensity factor empirical
formula for pure bending

get data............ ... input material data from file

input_print........... .....print input data to screen

Kicoeeaonaanas ceenan .......Stress intensity factor

mat_assign....... e ....MATRIX structure assignment function

modal............ teerranees beam characteristic equation
coefficients

multi_al.oveeineeinnnnnn. multiple integral algorithm

newton_raphson............. solves nonlinear equation using Newton-
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Raphson algorithm

Phieeeeeeeeeinansrnacannnnn beam characteristic equation

L L 172 square of beam characteristic equation

POMEr . i e eeinenciarnncananns Lattice SSP power function

pzb_timit..... ... ..., starting limit for second integration
of multiple integration

pze_limit.......ooiiiiinnn, ending limit for second integration of
multiple integration

SIMPSON. ceviinrernnnnnnnann numerical integration using Simpson's
rule
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#include <stdio.h>
#include <math.h>
#include <numeric.h>
#include <storage.h>

#define cube(x) ((x)*(x)*(x)) /* cube function */

#define sqr(x) ((x)*(x)) /* square function */
#define quad(x) sqr(x)*sqr(x) /* fourth power function */
#define PVERSION "1.0" /* program version number */
#define PDATE "11 AUG 1987" /* program date */

/* program title */

#define PTITLE "Internal damping vs. crack propagation model"

#define MAX_INT 6 /* number of integers input from file */
#define MAX_REAL 36 /* number of reals input from file */

unsigned _STACK = 4096; /* stack size */

main( argc, argv )

int argc;

char *argv(];

{
double a_0, a_disl, a_final, a_new, a_old, b_crack, c, c_1, c_2, c_heat;
double chi, delta, delta_crack, delta_ext, delta_h, delta_i, depth, e;
double ei, g_check, g_last, gen_mass, growth_rate, h, k, kappa, k_crack;
double k_knife_edge, |, lambda_0, lambda_p, l_exciter, life, { _load;
double m_beam, m_exciter, moment, omega, p, r_plastic, sif, slope_factor;
double tau, temperature, theta, toler;
double alpha, n_max, n_p, n_ult, e_nominal, e_yield;

/* double arrays */
double crackl9), ez_Llimit[2), input_real [MAX_REAL], mode_datal8};




double phi_data(5], plot_pak(7], print_pak(12]1, pz_timit(2], theta_h(71;
double theta_pl7);

/* double functions */

double crack_integral(), da_dn(), ddphi(), dexp(), dphi(), dsqrt();
double ezb_Limit(), eze_limit(), f(), ki(), multi_al();

double newton_raphson(), power(), pzb_limit(), pze_Limit(), simpson();
double strain(), strain2(), n2_theta_h(), phi(), phi2();

D_SUPPLD a_fun, da_fun, e_begin, e_end, e_fun, p_begin, p end, p_fun;
D_SUPPLD n_begin, n_end, n_fun, h_fun;

FILE *f1, *f2;

FILE *fopen();

int data_rate, i, j, m, maxum, n;

int input_int [MAX_INT];

int dats_plot(), fclose(), get_data();

MATRIX mode;

MATRIX beam_mode(), d_modal(), mat_assign(), modal();
M_SUPPLD m_fun, dm_fun;

unsigned int is_type_sif, is_plot_file;

void data_print(), input_print();

printf( ¥ Title: %s\n", PTITLE );
printf( * version: Xs\n", PVERSION );
printf( " Date: ¥%s\n\n", PDATE );

/* check for data file in command line */

if( Cargc <2 ) || Carge >3 ) ) { /* invalid nunber of data files */
printf( * \n Usage: programname filename [output filenamel® );
exit( 1 );

)

/* open data file */

if¢ ( f1 = fopen{ argv{i]l, "r* ) ) == NULL ) (
printf( * Cannot open Xs\n", argvi1}] );
exit( 1);

M

/* make or overwrite output file */
is_plot_file = FALSE; /* do not output to file */
if (arge == 3 ) (
if ( ( f2 = fopen( argv([2), "w" ) ) == NULL ) (
printf( " Cannot open %s\n", argv(2]) );
exit{ 1);

else (
is_plot_file = TRUE; /* output to file */
printf( " Creating data output file Xs\n\n", argv([2] );
)

/* STEP 1. Input material and crack growth constants

in addition to material and crack growth constants, the following
program control data must also be input:

data_ ate = number of fatigue cycles between data output
is_type_sif = 0 for constant load
1 for constant stress intensity factor
j = initial cycle number
m = number of subintervals for integration
maxum = number of iteration cycles
n = number of subintervals for second integration
toler = accuracy tolerance for Newton-Raphson iteration */

if ( get_data( f1, input_int, input_real ) ) (
printf( " Error in data input from %s\n", argv(1] );
exit( 1);
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}

if ¢ fclose( f1
(4

¥ /*

finished with input file */

printf( " Error in closing input data file Xs\n", argv(1] );

exit( 1);
)]

/i

/* print input data to screen ¥/
input_print( input_int, input_real );

/* set constants
a0

could not close data file */

from input file */

input_real [0];

crack length */

plastic zone depth factor */
eigenvector update parameter */

life expended variable */

assume an initial scale factor of 1 */
/* relaxation constant */

a_disl = input_real [(1];
a_final = input_real [2];
atpha = input_real [3];
b_crack = input_real [4];
c = input_real {5];
c_1 = input_real [6);
c_ 2 = input_real [7];
c_heat = input_real [8);
chi = input_real (9];
data_rate = input_int(0];
delta_ext = input_real [10];
e = input_real (11];
ei = input_real [(12};
n_max = input_real [13];
n_ult = input_real [14];
g_check = input_real [15];
growth_rate = input_real [16];
h = input_real (17);
is_type_sif = input_int{1};

] = input_int[2);
k = input_real [18];
k_knife_edge = input_real [19];
l = input_real [20);
L_exciter = input_real [21];
{_load = input_real [22);
Lambda_0 = input_real [23];
m = input_int([3];
maxum = input_int([4];
m_beam = input_real [24);
m_exciter = input_real [25];
n = input_int(5);
p = input_real [26];
e_yield = input_real (27);
slope_factor = input_real[28];
temperature = input_real [29]1;
toler = input_real [30];
/* STEP 2. Initialize variables */
a_old = a_0; "
depth = 0.5; />
g_last = 0.; /”*
life = 0.; Vo
phi_datal4l = 1.; r*
tau = sqr( h/Pl )*c_heat/k;
mode = mat_assign( 5, 1, NULL );

/* set aside memory for the
beam mode characteristics */

/* initial guess of mode variables */

for (i =0; i <

mode.element (1)

5; i++ )

_fun. = da_dn; /*
a_fun.coeff = crack; /*
da_fun.coeff = crack; /*

input_real [31 + i];

crack_integral; /* crack length integral function pointer */

da/dN function pointer */
the same coefficients are required to
calculate the crack length and the

*/
*/
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crack (0]
crack{1]
crack[2])
crack 3]
crack [4)
crack[5)
crack[6]
crack(7]

m_fun. funct
dm_fun. funct
m_fun.coeff
dm_fun.coeff
mode_data[0]
mode_datal2]
mode_data[3]
mode_data[4])
mode_data[5]
mode_data[6]

mode_datal(7)

e_begin. funct
e_end. funct
e_fun. funct
e_begin.coeff
e_end.coeff
e_fun.coeff
ez_Limit[0]
ez_limit[1]
theta_h[0]
theta_h(1]

p_begin. funct
p_end. funct
p_fun. funct
p_begin.coeff
p_end.coeff
p_fun.coeff
theta_p(0]
theta_p(1]

n_begin. funct
n_end. funct
n_fun. funct
n_begin.coeff
n_end.coeff
n_fun.coeff

h_fun. funct
h_fun.coeff

"W w6 . nwu

[ I T T I T I P [ [ 1

b_crack;

ei;
growth_rate;
h;
k_knife_edge;
l_toad;

P )
(double) m;

modal ;
d_modal;
mode_data;
mode_data;
k_knife_edge;
l
m_beam;
m_exciter;
ei;
l_exciter;

~e

= (double) m;

wow o noun

ezb_limit;
eze_limit;
n2_theta_h;
ez_Limit;
ez_limit;
theta_h;

pzb_limit;
pze_limit;
n2_theta_h;
pz_Llimit;
pz_Llimit;
theta_p;
c_1;

c_2;

ezb_Limit;
eze_limit;
strain2;
ez_limit;
ez_limit;
phi_data;

phiz;
phi_data;

/t
/ﬁ
/*
/'
/i
/i
/t
/*

/t
/t
/t
/*
/*

/i
/'
/i

/t
/ﬁ

/*
VAd
/*
/t

/t
/t
/*

/t
/i
/'
/t

/i
/*
/*
/t
/*
/*

/*
/*

da/dN function.

pass seven coefficients to a_fun &
df_fun,

these coefficents calculate e_nominal
which is used to determine the stress

intensity factor on which the functions
are based.
number of subdivisions for integration

beam mode characteristics equations

derivative of characteristics equations

the same coefficients are required to
calculate the characteritics equations
and their derivatives. knife-edge
stiffness. beam length

beam mass per unit length

mass of exciter

modulus and moment of inertia

position of exciter relative to knife-
edge

nunber of subdivisions for integration

lower elastic timit function

upper elastic Limit function

strain squared x amplitude-dependent
damping function

lower elactic Limit is 0.

upper elastic limit is one half h
internal damping coefficient
internal damping coefficient

lower plastic limit function

upper plastic limit function

strain squared x amplitude-dependent
damping function

internal damping coefficient

internal damping coefficient

use elastic functions for integrating
strain over the volume of the beam
strain

use coefficients of ddphi

beam characteristic equation
eigenvector data

/* calculate constant stress intensity factor */

k_crack = b_crack*cube( h/a_old );

/* torsional stiffness at crack */

/* Rotation of beam at knife-edge support */

theta =

( 2.*ei + |_load*k_crack )*{_load*p/

( 4.*ei*( k_knife_edge + k_crack ) );

/* Nominal bending moment between load points */

moment =
e_nominal =

.5*_load*p - k_knife_edge*theta;
6.*moment/sqr(h);

/* nominal bending stress */

sif = ki( a_old, h, e_nominal );

/* constant stress intensity

factor */
r_plastic = sqr( sif/e_yield )/(PI*6.); /* constant plastic zone
radius */
/* STEP 3. while a_old <= a_final */

*/
*/
*/
*/
*/
*/
*/
*/

*/
*/
*/
*/
*/
*/
>/
4

*/
*/
*/
*/

*/
*/

*/

*/
*/

*/
*/
*/
*/




while ( a_old <= a_final ) (

/* STEP 3.1 Calculate crack length for current cycle */

/* STEP 3.1.1 Assume a value for a_new */
a_new = a_old + growth_rate*quad( sif );

if (V¢ is_type_sif ) )

{

/* constant fatigue load */
/* STEP 3.1.2 Use Newton-Raphson Interation */

crack[8) = a_old; /* lower Limit of integral */
a_new = rewton_raphson( a_new, maxum, toler, a_fun, da_fun );
>
/* STEP 3.2 Sum the new value of life expended */
n_p = n_ult*power( ( a_new - a_old )/a_final, ¢ ); /* plastic
strain */

life += power( n_p/n_ult, 1./c ); /* include 2 only if loading

occurs on both up and dowr
stroke of piston */

/* STEP 3.3 Calculate new torsional stiffness at crack */
k_crack = b_crack*cube( h/a_new );
mode_datal1] = k_crack; /* pass on crack stiffness */

if ( is_type_sif )

{

/* calculate new load */

e_nominal

moment
P

}
else
(

sif/( dsqrt{ Pl*a_new )*f( a_new/h ) ); /* nominal
bending
stress */

sqr( h Y*e_nominal/6.; /* nominal bending moment */

4.*ei*( k_crack + k_knife_edge )*moment/

( ( 2.%ei - l_toad*k_knife_edge )*|_load*k_crack );

/* for constant load, calculate new plastic zone radius
Rotation of beam at knife-edge support */
theta = ( 2.*ei + |_load*k_crack )*|_load*p/
( 4.%ei*( k_knife_edge + k_crack ) );

/* Nominal bending moment between load points */

moment
e_nominal

/* STEP 3.
r_plastic

b

n B

.5*1_load*p - k_knife_edge*theta;
6.*moment/sqr( h ); /* nominal bending stress */

Compute new plastic zone size */

sqr( ( sif = ki( a_new, h, e_nominal ) ) /e_yield )/
(PI1*6.);

/* STEP 3.5 Compute beam fundamental mode characteristics
including eigenvalue, kappa, eigenvector, phi(x), and resonant
frequency, omega. Use the nonlinear system of equations function

to solve this

element [0)
element[1)
element (2)
element (3]
element (4]

where phi(x)

5

equation system. Assign the vector x as follows

eigenvalue, kappa
resonant frequency, omega
B coefficient

C coefficient

D coefficient

cos( kappa*x ) + B*sin( kappa*x ) +

C*cosh( kappa*x ) + D*sinh( kappa*x ),
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and ddphi(x) = sqr( kappa )*( -cos( kappa*x ) - B*sin( kappa*x ) +
C*cosh( kappa*x ) + D*sinh( kappa*x ) ) */

if ( abs( a_new - g_last ) > g_check ) /* only update for large
crack growth */

4

node = beam_mode( mode, maxum, toter, m_fun, dm_fun );

g_last = a_new; /* reset crack length of last update */
kappa = mode.element [0]; /* eigenvalue */

omega = mode.element[1]; /* resonant frequency */

/* STEP 3.6 Determine amplitude scaling factor */

phi_datal0) = kappa;

phi_datal1] = mode.element[2];

phi_data{2) = mode.element(3);

phi_data(3] = mode.element(4];

phi_datal4l = 1.;

phi_datal4) = n_max/strain( t, .5*h, phi_data );

/* STEP 3.7 Calculate plastic zone dislocation density */
lambda_p = ( a_disl/chi )*( 1 - dexp( -.5*chi*n p ) ) +

dsqrt( lambda_0 )*dexp( -.5*chi*n_p );
tambda_p = sqr( lambda_p );

/* STEP 3.8 Compute average amp!itude-deperdent damping ratio
delta_F = ( lambda_o*t n(x,z) 2*theta_h(n(x,z)) dv +
up
lambda_0*t n(x,z) 2*theta_h(n(x,z)) dv )/

ue

t n(x,2)°2 dv
u

where the functions n(x,z) and t :ta_n(n(x,z)) are defined by

n(x,z) = z*scale_iactor*kappa 2*h"(x)
theta_h(n(x,2)) = c_1*(c_2/n(x,z)) 2*eil(c_2/n(x,2))

and eil1() is the expor«it.oi 1nteg- | function. */

/* check size of plastic zone relative to remaining section depth */
if ( ( pz_timit(0] = 0.5*Ch - a_new) - r_plastic ) < 0.0 )
/* r_plastic is too large for remaining section depth */
{
r_plastic = 0.5*(h - a_new); /* r_plastic is half of
remaining section depth */

pz_limit[0] = 0.0; /* treat plastic zone as full
depth of section */
depth = 1.0;
)
pz_Limit[1} = 0.5*Ch - a_new); /* upper plastic limit is one
half h less crack length */
theta_h(2) = kappa; /* eigenvalue */
theta_h(3] = mode.element(2]; /* phi(x) coefficient B */
theta_h{4) = mnde.element(3); /* phi(x) coefficient C */
theta_h(5] = mode.element{4); /* phi(x) coefficient D */
theta_h(6) = phi_data{4]); /* amplitude scale factor */
theta_p(2] = kappa; /* eigenvalue */
theta_p(3) = mode.element(2); /* phi(x) coefficient B */
theta p{4) = mode.element{3); /* phi(x) coefficient C */
theta_pl[5) = mode.element[4]; /* phi(x) coefficient D */
theta_p(6) = .25*sqr( h/pz_timit[1] )*phi_datal(4};

/* amplitude scale factor
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adjusted for reduced cross-
section in plastic zone »*/

delta_h = ( multi_al( 0., |, m, n, e_begin, e_end, e_fun ) +
depth*( ( lambda_p - lambda_0 )/lambda_0 )*
multi_al¢ | - r_plastic, |, m, n, p_begin, p_end, p_fun ) )/
multi_al¢ 0., ¢, m, n, n_begin, n_end, n_fun );

/* STEP 3.9 Compute frequency dependent damping ratio */

delta_i = (2.*PI*sqr( alpha )*e*temperature)/c_heat*
omega*tau/( 1 + sqr( omega*tau ) );

/* calculate damping due to crack surfaces based on slope of beam at
crack */
delta_crack = slope_factor*abs( dphi( |, phi_data ) );

/* STEP 3.10 Sum average amplitude- and frequency dependent
daiping. Also, sum external and crack related damping */

delta = delta_crack + delta_ext + delta_i + delta_h;
3 /* end of update block */

/* STEP 3.11 Output results for j X% data_rate ==

fatigue cycle number, j

fatigue crack length, a_new

stress intensity factor, ki

torsional stiffness at crack, k_crack
fraction of life expended, life

plastic zone size, r_plastic

plastic zone strain, n_p

resonant frequency, omega

average amplitude-dependent damping ratio, delta_h
frequency dependent damping ratio, delta_i
total damping ratio, delta */

if ( ( j X data_rate ) == 0 ) {
if ( is_plot_file ) ¢
plot_pak{0] = p; /* fatigte load */
plot_pak[1] = e_nominal/e; /* fatigue nominal strain */
plot_pak(2] = a_new; /* fatigue crack length */
plot_pak[3] = sif; /* stress intensity factor */
plot_pak([4] = delta; /* total internal damping */
plot_pak([S] = omega/(2.*Pl); /* resonant frequency (hz) */

/* compute ratio of max beam strain to input forcing function.
general ized mass */
gen_mass = m_beam*simpson( 0., L, m, h_fun ) +
m_exciter*phi2( |_exciter, phi_data );
plot_pakié] = n_max*abs( phi{ l_exciter, phi_data ) )/
( 2.*delta*sqr( omega*gen_mass ) );
if ¢ data_plot( f2, j, plot_pak ) 1= 0 ) /* output results in
plot format */

(

printf( "File write error in main\n" );

exit( 1);

)

) else (

print_pak[0] = a_new; /* fatigue crack length */
print_pak(1] = sif; /* stress intensity factor */
print_pak[2] = k_crack; /* torsional stiffness at crack */
print_pak(3] = life; /* fraction of life expended */
print_pak[4) = r_plastic; /* plastic zone size */
print_pak(5] = n_p; /* plastic zone strain */
print_pak[6] = omega; /* resonant frequency */
print_pak{7} = delta_h; /* amplitude-dependent damping */
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print_pak{8)] = delta_i; /* frequency dependent damping */
print_pak(9] = delta_crack; /* crack dependent damping */
print_pak([10] = delta; /* total damping ratio */
print_pak(11]) = p; /* fatigue load */
data_print( j, print_pak ); /* put results on screen */
)
)
a_old = a_new; /* increment crack length */
++j; /* increment cycle counter */
) /* end of while loop */
if ( is_plot_file )
if ( fclose( f2 ) ) /* finished with output file */
{
printf( " Error in closing output data file Xs\n", argv(2] );
exit( 1); /* could not close output file */
}

/* STEP 4. stop */

printf( * Normal exit\n" );
exit( 0 );




/* <p> d:\lc\header\ */
/i WHRN AR AR EANN R REAN TR RN AR AR T AN RN AR AN R ARANRAR NN ARRARRARNR AR
This set of routines provides specific support for the program

dmp_crck. These functions are for use with dmp_crck only and may
require modification to work with other programs.

beam_mode.................n compute beam eigenvector, eigenvalue
and frequency
crack_integral............. compute crack length residual
dmodal.......ccevvevinnnn. derivative of beam characteristic
equation coefficirents
da_dn.. .....iieiiiniianaan change in crack {ength as a function of
fatigue cycle number
data_plot.....oovvnnieannn. output to file data for DISSPLA plot
data print................. output to screen data printout
dddphie.eeneeenraeeennnnnns third derivative of beam characteristic
equation with respect to the beam
coordinate
ddphi..o.oiiiiiiiiinaaaan, second derivative of beam

characteristic equation with respect
to the beam coordinate

ddphid. ... iiiiiiniiiianaas square of second derivative of beam
characteristic equation with respect
to the beam coordinate

o= 4 I first derivative of beam characteristic
equation with respect to the beam
coordinate

ezb_limit.............. ... starting limit for second integration
of multiple integration

eze Limit.................. ending Limit for second integration of
multiple integration

for e e empirical formula for stress intensity
factor in pure bending

get_ data........covenennnn input material data from file

INPUL_Print...e.eeeeienenns print input data on screen

3 TP stress intensity factor for pure
bending

modal .o et iiieiin i it beam characteristic equation
coefficients

Straing....ceeeeercnennnnn, strain squared function

n2_theta h................. strain squared, amplitude dependent
damping function

Phiceeeiiiieiiieiieenenes beam characteristic equation

[0 -2 square of beam characteristic equation

pzb_limit........cooiiiiian starting limit for second integration
of multiple integration

pre_limit.................. ending limit for second integration of
multiple integration

3 Q0 1 1 o T beam strain function

E2 22222222223 st st at s ss it sal sl i i sl sl lsd ./

#include <stdio.h>
#include <math.h>
#include <numeric.h>
#include <storage.h>

#idefine cube(x) ((x)*(x)*(x)) /* cube function */

#define sqrix) ((x)*(x)) /* square function */

#define quad(x) sqr(x)*sqgr(x) /* fourth power function */

#define MAX_INT 6 /* number of integers input from file */
#definc AAX_REAL 36 /* number of reals input from file */




MATRIX beam mode( mode, maxum, toler, mode_fun, dmode_fun)

/* RERRANCNRRREAARRRA AR RRRAAN NN RN R AR IR RAN R A AR R TR AR bR hdd

NAME

beam_mode............ «e....Compute beam fundametal characteristics
including eigenvalue, eigenvector, and
resonant trequency

SYNOPSIS
include <numeric.h>
mode = beam_mode( mode, maxum, toler, mode_fun, dmode_fun); beam
characteristics computed by Newton-
Raphson iteration
MATRIX mode; vector containing initial guess of

characteristics as input, and final
solution values as output

int maxum; maximum number of Newton-Raphson
iterations

double toler; accuracy tolerance on final solution

M_SUPPLD mode_fun, user supplied beam characteristic
equations and coefficients

dmode_fun; user supplied derivative of beam
characteristic equations and
coefficients
DESCRIPTION

A vibrating beam has four boundary conditions and an equation of
motion. Applying the Newton-Raphson iteration algorithm to these
five equations results in a solution for the eigenvalue,
eigenvector and resonant frequency.

FUNCTIONS USED

REFERENCES

Burden, R.L. and Faires, J.D. "Numerical Analysis,” third
edition, Prindle, Weber and Schmidt, Boston, 1984, pp. 153-
195.

Harris, C.M. and Crede, C.V. (eds). Shock and Vibration Handbook,
2nd edition, McGraw-Hill, New York, pp. 7-13 through 7-15, 1976.

Thomson, W.T. "“Theory of Vibration with Applications," Prentice-
Hall, Inc. Englewood Cliffs, NJ, 1972.

AUTHOR: Rick Jones
VERSION: 1.0
DATE: 18 AUG 1987
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double toler;

int maxum;

MATRIX mode;

M_SUPPLD dmode_fun, mode_fun;
(
MATRIX newton();

/* begin newton-raphson iterative solution */
mode = newton( mode, maxum, toler, mode_fun, dmode_fun );

/* check for convergence */

if ¢ mat_err == TRUE )
printf( “"newton solution failed to converge \n" );
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/* return vector solution */
return ( mode );

b

double crack_integral( a, co )
/t RN RN AN R RN E N AR AANEE A NN AN AR RAN AR AR AN AR AR RN N AR AR NRA

NAME

crack_integral........ .....computes crack length residual integral
using Simpson's Rule

SYNOPS!S
include <numeric.h>

delta_a = crack_integral{ a, co ); Compute crack length residual
from integral of da/dN relation

double a, crack length guess
*co, array of coefficients for use in function
delta_a; residual due to error in estimate of a
DESCRIPTION

This function uses Simpson's rule to calculate an increase in the
crack length integral. The function then computes the error in the
crack length integral increase by subtracting the known solution
from the numerical integration value. The resulting error is
returned to the calling function.

ta_new
residual = 3 (da/(ki(a)) 4) - growth_rate,
ua_old
col0) = b_crack
coll] = ej
co(2] = growth_rate
co(3] = h
col4] = k_knife_edge
co(5] = (_load
co(6) =p
col?] = (double) m
co(8) = a_old
FUNCTIONS USED
da_dn........ Ceeteieaae ..change in crack length at a function of
fatigue cycle number
SIMPSON. v e ivennernnncanenns numerical integration using Simpson's
rule

REFERENCES

Frost, N.E., Marsh, K.J. and Pook, L.P. '"Metal Fatigue,"
Clarendon Press, Oxford, 1974, pp 234-235.

AUTHOR: Rick Jones
VERSION: 1.0
DATE: 18 AUG 1987
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double a, *co;
{

double da_dn(), simpson();

D_SUPPLD da_fun;
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da_fun. funct
da_fun.coeff

da_dn;
co;

/* da/dN function pointer */
/* da/dN array pointer */

/* return integral - crack growth constant */

return ( simpson( col81, a, ( int ) col7), da_fun ) - 1. );

MATRIX d modal( x, co, df )

/k ﬁ**iﬁ:ﬁ*iiﬁii**i*ﬁ*i*i*tttiiﬁ*iﬁi'**ﬁ*tiiﬁi*ﬁ**iiﬁi**iiititﬁii."tﬁﬁ.

NAME
dmodal.........ooveviunnan computes the matrix of coefficient
derivatives for Newton_Raphson
iteration
SYNOPSIS

include <numeric.h>

df = d_modal( v, co, df ); compute derivative matrix of nonlinear
equation coefficients
double *co; pointer to array of coefficient
parameters

MATRIX x, vector of solution values
dx; matrix containing derivative terms of
nonlinear equation coefficients
DESCRIPTION

User supplied routine to calculate the partial derivatives of the
nonlinear system of equations as a function of x with modifiable
coefficients

col[0) = k_knife_edge; knife-edge stiffness

col1] = k_crack; crack stiffness

co(2) = ; beam length

co(3) = m_beam; beam mass per unit length

col4] = m_exciter; mass of exciter

col5) = ei; modulus and moment of inertia

col6) = l_exciter; position of exciter relative to knife-
edge

co[7) = (double) m; number of subdivisions for integration

FUNCTIONS USED

coeff red.................. reduction of coefficients
dcoeff.. ... .ioeiiiiiian, partial derivative of coefficient reduction
d_determ..............0uvnn partial derivative of determinate
ACOS. . niiiiiiiineens canans Lattice SSP cosine function
deosh. oo ieiiiiennnnnnn.. Lattice SSP hyperbolic cosine function
Lo L T Lattice SSP sine function
dsinh...iiiiiiiiiinnnnnns, Lattice SSP hyperbolic sine function
mat_assign.........ceveeu.nn assign matrix structure
mat _delete................. delete matrix storage space

REFERENCES

Burden, R.L. and Faires, J.D. *"Numerical Analysis," third
edition, Prindle, Weber and Schmidt, Boston, 1984, pp. 153-

195.
AUTHOR : Rick Jones
VERSION: 1.0
DATE: 18 AUG 87
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MATRIX df, x;:
double *co;

{

double ch_ei, c_ei, eigen, gen_mass, gei_stiff;
double sh_ei, s_ei, stiff_c, stiff_ke;
double phi_data([51;

double d_determ(), ddphi2(), p2k(), p2kb(), p2kc(), p2kd(), p2m();

double p2mb(), p2mc(), p2md(), phi2();
double dcos(), dcosh(), dsin(), dsinh();

int i;

O_SUPPLD ddh_fun(5), h_fun(5];
MATRIX a, a_p, coeff, coeff_p;
MATRIX coeff_red(), d_coeff(), mat_assign(), mat_delete();

/* user supplied equations for beam analysis */

eigen = x.element [0} *col[2]; /* eigenvalue * length */

ch_ei = dcosh( eigen );

c_ei = dcos( eigen );

sh_ei = dsinh( eigen );

s_ei = dsin( eigen );

stiff_c = cof11/( x.element[0)1*co[5) ); /* characteristic stiffness
at crack */

stiff_ke = col01/( x.element[01*co(S] ); /* characteristic stirfness
at boundary */

/* characteristic equation coefficients */

phi_data[0] = x.,element [0];

phi_data(1] = x.element(2];

phi_data(2] = x.element [3);

phi_data(3] = x.element (4];

phi_datafe]l = 1.; /* use scale factor of 1 */

/* create a matrix and partial derivative matrices */

a = mat_assign( 4, 4, NULL );

a_p = mat_assign( 4, 4, NULL );

/* fill a matrix */

a.element{ 01 = 1 ;

a.element[ 1] = 1.;

a.element[ 2] = -( c_ei + stiff _c*s_ei );

a.element[ 3] = s_ei;

a.element( 4] = 0.;

a.element[ 51 = stiff_ke;

a.element[ 6] = -s_ei + stiff_c*c_ei;

a.element( 7] = -c_ei;

a.element( 8] = 1.;

a.element([ 91 = -1.;

a.element{10] = ch_ei + stiff_c*sh_ei;

a.element[11]) = sh_ei;

a.element[12] = 0.;

a.element [13] = stiff_ke;

a.element[14) = sh_ei + stiff_c*ch_ei;

a.element[15] = ch_ei;

/* partials with respect to eigenvalue */
a_p.element( 0]

a_p.element [
a_p.element(
a_p.element(
a_p.element(
a_p.element [
a_p.element (
a_p.element(
a_p.element [
a_p.element(

11
2]
3}
4
5]
6]
7]
8)
9]

L)

col2)*c_ei;
0.;
-co[21*stiff_ke/eigen;

col2]l*s_ei;
0.;
0.;

LI T T 1 [ TR T B [ B 1)
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8_p.element[10] = col2}*( ( 1. - stiff_c/eigen )*sh_ei + stiff_c*ch_ei );
a_p.element [11] = col2)*ch_ei;

a_p.element[12) = O.;

a_p.element[13] = -co[2)*stiff_ke/eigen;

a_p.element[14] = co[2)*( ( 1. - stiff_c/eigen )*ch_ei + stiff_c*sh_ei );
a_p.element[15] = col[2)*sh_ei;

/* 0 partial differential matrix */
for (i =0; i <= 24; ++i )
df.element (i) = 0.;

/* partial derivatives of first equation with respect to eigenvalue.
all other partials of first equation are 0 */
df.element (0] = d_determ( a, a_p );

/* get coefficients and partials */

coeff = mat_assign( &, 1, NULL );
coeff_p = mat_assign( 4, 1, NULL );

/* fill coefficients in terms of coeff(0] */
coeff = coeff_red( a, coeff );

coeff_p = d_coeff( a, a_p, coeff p );

/* setup array of functions for partial derivatives of generalized mass
and stiffness */

h_fun(0].funct = p2m; /* mass with respect to eigenvalue */
ddh_fun[0].funct = p2k; /* stiffness with respect to eigenvalue */
h_fun(1].funct = phi2; /* mass with respect to frequency */
h_fun{2].funct = p2mb; /* mass with respect to coefficient B */
ddh_fun(2).funct = p2kb; /* stiffness with respect to eigenvalue B */
h_fun[3].funct = p2mc; /* mass with respect to coefficient C */
ddh_fun[3].funct = p2kc; /* stiffness with respect to coefficient C */
h_funfé]l.funct = p2md; /* mass with respect to coefficient D */
ddh_fun{4].funct = p2kd; /* stiffness with respect to coefficient D */

/* pass coefficients to integration functions */
for (i = 0; i <5; i++ )

{

h_funlil.coeff = phi_data;

ddh_funfi).coeff = phi_data;

/* partial of beam mass */
gen_mass = co[3)*simpson( 0., col2), (int) cof7], h_fun[il ) +
col4)*(*h_fun(il.funct)( co(6]), phi_data );

if(i==1)
/* partial derivative of equation 2 with respect to frequency */
df.element {6) = 2.*x.element{1]*gen_mass;

else
(
/* partial of beam stiffness */
gen_stiff = co[5)*simpson( 0., col2}, (int) col7], ddh_funli} );

/* partial derivatives */
df.element [1 + 5*i] = sqr( x.element{1] )*gen_mass - gen_stiff;
)

>

/* third - fifth equations, derivative with respect to eigenvalue */
for (1 = i; 1 <= 3; ++i ) (
df .element [i+1] = coeff_p.element[i];

)

/* third - fifth equations, mode shape coefficients */
df.element(12) = -1.;

df .element{18) = -1.;

df.etement[24) = -1.;




/* release storage */

[ = mat_delete( a );

a_p = mat_delete( a_p );
coeff = mat_delete( coeff );
coeff_p = mat_delete( coeff_p );

return ( df );

double da_dn( a, co )

/Q WRRR AT AN AR AR AR RN RN R AR RA NN TR AN RN R A RRNNR AR A AN AR A RAR AN RRN

NAME

da_dn........ fheaseaeasanase crack growth per fatigue cycle
SYNOPSIS
rate = da_dn( a, co ); crack growth rate per fatigue cycle
double a, crack length estimate
*co, array of material coefficients
rate; crack growth rate
DESCRIPTION

Compute crack growth rate based on dislocation theory. The
relation is

da/dN = alpha*KI“4

where KI is the stress intensity factor and alpha is a material
dependent constant. The function ki is used in the computation
of the stress intensity factor. ki requires the following
calculations

Calculate new torsional stiffness at crack
k_crack = b_crack*cube( ( h/a_new ) );

Rotation of beam at knife-edge support
theta = ( 2.*ei + l_load*k_crack )*1_load*p/
( 4.*ei*( k_knife_edge + k_crack ) );

Nominal bending moment between load points

moment = .5*1_load*p - k_knife_edge*theta;
e_nominal = 6.*moment/sqr(h); nominal bending stress
col(0] = b_crack

co(1] = ei

cof2] = growth_rate

co(3] =h

cof4) = k_knife_edge

colS] = |_load

co(6] =p

col7} = (double) m

col8] = a_old

Express the relation in the form
da/alpha*kKl1 4 = dN
FUNCTIONS USED
T compute stress intensity factor

REFERENCES
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Frost, N.E., Marsh, K.J. and Pook, L.P. "Metal Fatigue,"
Clarendon Press, Oxford, 1974, pp 234-235.

AUTHOR: Rick Jones
VERSION: 1.0
DATE: 18 AUG 1987
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double a, *co;

{
double k_crack, moment, e_nominal, theta;
double ki();

/* Calculate new torsional stiffness at crack */
k_crack = co(0)*cube( col31/a );

/* Rotation of beam at knife-edge support */
theta = ( 2.*co(1] + co[51*k_crack )*col[51*co(6]/
C 4.*%co(1]1*( cof4] + k_crack ) );

/* Nominal bending moment between loacd points */
moment = 5*col51*col6]) -~ colél*theta;
e_nominal = é.*moment/sqr( co(3] ); /* nominal bending stress */

/* return growth rate */
return ( 1./( col2)l*quad( ki( a, col3], e_nominal ) ) ) );

int data_plot( fp, n, data ?
/* E P22 222 s 2t R 2l s st sl il sR il lss s dd

NAME

data _plot. = ........... Cutput to a file data for use with
DISSPLA programs on the PRIME

SYNOPSIS

data_plot( file, n, data ) Output data to file in specific format

FILE *fp; output file

int n; fatigue cycle number

double *data; pointer to array of output data
DESCRIPTION

This function outputs data in the following format

n p strain a_new ki
%S %4f6  %el1.6  xxxxxxxxxxx %ell.4 xxxxxxxxxxx %ell.4 XXXXXXXXXXX

delta frequency amplification
%el11.4 %f7.1 %et1.4

where

amplification = ratio of output strain in beam to input force
of exciter (in/in/lb)

a_new = crack length (in)

delta = internal damping ratio

frequency = resonant frequency of beam (cps)

ki = stress intensity factor (psi-in~1/2)

n = fatigue cycle number

p = fatigue load

strain = nominal strain in beam under fatigue load

and smell x represents a blank space.
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FUNCTIONS USED

forintf. . .o eieenenennnns write to file
REFERENCES
AUTHOR: Rick Jones

VERSION: 1.0
DATE: 18 AUG 1987
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double *data;

FILE *fp;
int n;
(

char *record_1
char *record_2
int err;

"%5d%6.0fX11.4E %11.4E %11.4EN\N";
R LERT7 . 1F %11 4E\NY;

o

/* initialize error code */
err = 0;

/* display fatigue cycle number and crack length on screen */
printf( "fatigue cycle number: %5d\n", n );

printf( “crack length: %11.4e (in)\n*, datal(2] );
printf( "total damping: %11.4e\n", datal4] );

/* write first record to file */
if ¢ fprintf( fp, record_1, n, datal0], datal1], datal2], datal3] ) = 67 )

(
printf( "“File write error in data_plot\n" ); /* error in output */
err = 1; /* set error code */
)
else /* wWrite second record to file */
if ( fprintf( fp, record_2, data(4]), data[5], datalé] ) != 30 )
(
printf( "File write error in data_plot\n" ); /* error in output */
err = 1; /* set error code */
}
return({ err ); /* return error code */

void data_print( n, data )

/i deddrdedrdhddd ARk ik drdr kA dr kR AWk e e e e e e e e e e

NAME

data print................. Output dmp_crack results to screen
SYNOPSIS
data_print{ n, data ); Output crack growth and internal
damping results to console
double *data; array of results
n; fatigue cycle number
DESCRIPTION

Output table of crack growth and internal damping results to
console. Table of results

fatigue cycle number, j

fatigue crack length, a_new

stress intensity factor, ki

torsional stiffness at crack, k_crack
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fraction of life expended, life

plastic zone size, r_plastic

plastic zone strain, n_p

resonant frequency, omega

average amplitude-dependent damping ratio, delta_h
frequency dependent damping ratio, delta_i

crack length dependent damping ratio, delta_crack

to
fa

AUTHOR:
VERSION:
DATE:

tal damping ratio, delta
tigue loading, p

Rick Jones
1.0
18 AUG 1987
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double *dat
int n;
(

/* print

a;

to screen */

printf{ “"fatigue cycle number %5d (cycle)\n", n);
printf( "fatigue crack length %11.4le (in)\n", data(0] );
printf( “stress intensity factor %11.4le (psi-in~1/2)\n", data(1] );
printf( “torsional stiffness at crack %11.41e (lb-in)\n", data(2] );
printf( "“fraction of life expended %11.4le\n", datal3] );
printf( *plastic zone size %11.4le (in)\n", datal4) );
printf( “plastic zone strain %11.4le (in/in)\n", data(5] );
printf( “resonant frequency X11.4le (rad/sec)\n", datalé) );
printf( “amplitude-dependent damping ratio %t1.4le\n", datal7] );
printf{ “frequency dependent damping ratio X11.4le\n", datal8) );
printf( “crack length dependent damping ratio %11.4le\n", data[9] );
printf( “total damping ratio %11.4le\n", data{10] );
printf( "fatigue load X11.40e (Ib)\n\n", data(11]) );
return;

double dddphi{ x, co )

/t L2222 3222222333222 LTRSS SRR AR AR a it slalsldddd g
NAME

dddphi....covevvinnenennnns third derivative of beam characteristic
eguation with respect to x

SYNOPSIS

calculate third derivative of beam
characteristic equation with
respect to x

y = dddphi( x, co );

double *co, coefficients of characteristic equation
x, beam coordinate
Y; third derivative of beam at location x
DESCRIPTION

Calculate third derivative of beam at location x. Third derivative

has the following equation form

dddphi(x) = scale_factor*co(0] “3*( sin{ cof01*x ) -
cof1)*cos( co[0I*x ) +
co{21*sinh( co[0)*x ) +
col[3)*cosh( cof0}*x ) )

cof{0]l = kappa;

col1) = mode.element(2);
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co[2] = mode.element(3];
co(3] = mode.element(4];
cof4] = scale_factor;

FUKCTIONS USED

dCOS.eeiiirnannrnacaneanan Lattice SSP cosine function

dcosh. . cinriiiiniieniannn Lattice SSP hyperbolic cosine function

L L3 1 T Lattice SSP sine function

dsinh....cieieneeincecannnn Lattice SSP hyperbolic sine function
REFERENCES

Harris, C.M. and Crede, C.V. (eds). Shock and Vibration Handbook,
2nd edition, McGraw-Hill, New York, pp. 7-13 through 7-15, 1976.

Thomson, W.T. "Theory of Vibration with Applications," Prentice-
Hall, Inc. Englewood Cliffs, NJ, 1972.

AUTHOR: Rick Jones
VERSION: 1.0
DATE: 18 AUG 87
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double *co, x;

<

double y;
double dcos(), dcosh(), dsin(), dsinh();

/* calculate third derivative of beam at x */
y = colé)*cube( col0] )*( dsin( co[0]*x ) - co{1l*dcos( col01*x ) +
co[2)*dsinh( co[01*x ) + co(3]*dcosh( co{0l*x ) );

return ( y );

double ddphi( x, co )

/ﬁ L2222l dal el il st il sl il sl s ettt itestsllezyedyy

NAME
[ee | TP second derivative of beam
characteristic equation with respect
to x.
SYNOPSIS
y = ddphi( x, co ); calculate second derivative of
beam characteristic equation with
respect to x
double *co, coefficients of characteristic equation
X, beam coordinate
VH curvature of beam at location x
DESCRIPTION

Calculate curvature of beam at location x. Curvature has the
following equation form

ddphi(x) = scale_factor*co[0] "2*( -cos( co[0)*x ) -
col1)*sin{ cof0)*x ) +
col2)*cosh( cof01*x ) +
co(31*sinh( cof0)*x ) )

co(0]
cof1]

kappa;
mode.element (2] ;

[}
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co{2] = mode.element[3);
co{3] = mode.element(4];
col4] = scale_factor;

FUNCTIONS USED

dCoS.iniiiii ittt Lattice SSP cosine function

decosh.e.....c..n.. Ceeeeaaan Lattize SSP hyperbolic cosine function

L . Lattice SSP sine function

dsinh........... Ceemaaenan Lattice SSP hyperbolic sine function
REFERENCES

Harris, C.M. and Crede, C.V. (eds). Shock and Vibration Handbook,
2nd edition, McGraw-Hill, New York, pp. 7-13 through 7-15, 1976.

Thomson, W.T. "Theory of Vibration with Applications," Prentice-
Hall, Inc. Englewood Cliffs, NJ, 1972.

AUTHOR: Rick Jones

VERSION: 1.0
DATE: 18 AUG 87
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double *co, x;

{
double y;
double dcos(), dcosh(), dsin(), dsinh();
/* ca.culate curvature of beam at x */
y = colél*sqr( col0] )*( -dcos( col01*x ) - col11*dsin{ co[01*x ) +
co[2)*dcosh( col0)*x ) + col3)*dsinh( cof{0]1*x ) );
return ( y );
)

double ddphi2( x, co )

/t TR NN AR AN RN AN A AR AN AR AR AN R R AR AT AR RN A AR AR AR AR bk bk k

NAME

ddphi. i veriieeeiienennnane square of second derivative of beam
characteristic equation with respect
to x.
SYNOPSIS
y = ddphi2( x, co ); calculate square of second derivative of

beam characteristic equation with
respect to x

double *co, coefficients of characteristic equation
X, beam coordinate
y: curvature of beam at location x
DESCRIPTION

Caiculate square of curvature of beam at location x. Curvature has
the following equation form

ddphi(x) = scale_factor*co[0] "2*( -cos( co[0)*x ) -
co{ll*sin( col01*x ) +
col2)*cosh( cof0)*x ) +
col3)*sinh( col0)*x ) )

co[0) = kappa;
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col1] = mode.element(2];
col[2] = mode.element(3];
cof3] = mode.element([4);
col[4] = scale_factor;

FUNCTIONS USED
REFERENCES

Harris, C.M. and Crede, C.V. (eds). Shock and Vibration Handbook,
2nd edition, McGraw-Hill, New York, pp. 7-13 through 7-15, 1976.

Thomson, W.T. "Theory of Vibration with Applications,” Prentice-
Hall, Inc. Englewood Cliffs, NJ, 1972.

AUTHOR: Rick Jones

VERSION: 1.0
DATE: 18 AUG 87
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double *co, x;

double ddphi();

/* calculate square of curvature of beam at x */

return ( sqr( ddphi( x, co ) ) );
>

double dphi( x, co )

/'. Y2222 22T LN LSS LTSI RS2 S R Rl st sdd ]

NAME

dphi.eeeeiiinneneneonaennns first derivative of beam characteristic
equation with respect to x.

SYNOPSIS
y = dphi( x, co ); calculate first derivative of beam
characteristic equation with
respect to x
double *co, coefficients of characteristic equation
X, beam coordinate
y; slope of beam at location x
DESCRIPTION

Calculate slope of beam at location x. Curvature has the
following equation form

dphi(x) = scale_factor*co[0]*( -sin( cof01*x ) +
co[1]*cos( col[0)*x ) +
col[21*sinh( co(0)*x ) +
col3)*cosh( cof0)*x ) )

col0) = kappa;

co(1] = mode.element(2];
col2] = mode.element(3];
col3} = mode.element{4];
col4) = scale_factor;

FUNCTIONS USED

ACOS..oivnrnnsnsancenonnns Lattice SSP cosine function
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decosh.eeieeiennnnnn. Ceneans Lattice SSP hyperbolic cosine function

[ 3 1 T ereae .Lattice SSP sine function
dsinh.........unee eeeeaaen Lattice SSP hyperbolic sine function
REFERENCES

Harris, C.M. and Crede, C.V. (eds). Shock and Vibration Handbook,
2nd edition, McGraw-Hill, New York, pp. 7-13 through 7-15, 1976.

Thomson, W.T. “Theory of Vibration with Applications," Prentice-
Hall, Inc. Englewood Cliffs, NJ, 1972.

AUTHOR: Rick Jones
VERSION: 1.0
DATE: 18 AUG 87
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double *co, Xx;

{

double y;
double dcos(), dcosh(), dsin(), dsinh();

/* calculate slope of beam at x */
y = col4)*col0)*( -dsin( col0)*x ) + col1l*dcos( co(01*x ) +
cof21*dsinh{ col01*x ) + col3)*dcosh( colBl*x ) );

return ( y );

/*ARGSUSED parameter x is not used in this function */

double ezb limit( x, co )

/t D e I T L 2 L 2212 T2 Y PP TP

NAME
ezb_timit.................. z coordinate lower limit of
integration over the elastic range
SYNOPSIS
y = ezb_Llimit( x, co ); z coordinate lower limit of
integration over the elastic beam
material
double *co, user modifiable coefficients for
defining lower limit
X, value of x coordinate for application
in setting lower timit
Y; lower Limit of integration
DESCRIPTION

This function defines the lower limit of integration for the z
coordinate of a beam. The limit is specifically for the elastic
range of material. The function is called by multi_al, a routine
that performs multiple numerical integration.

FUNCTIONS USED
REFERENCES
Burden, R.L. and faires, J.D. “Numerical Analysis," third

edition, Prindle, Weber and Schmidt, Boston, 1984, pp. 153-
195.
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double *co, x;

¢
/* the first element in the array of coefficients contains a constant
that defines the lower limit for the function being integrated */
return ( col0] );
>

/*ARGSUSED parameter x is not used in this function */

double eze_limit( x, co )
/t ARNREARAE R R AR R RN AEREARAR RN AN RRNERNAAREAR A AN ARNERA AR AN R SRR

NAME

eze_limit.......... eses....2 coordinate upper limit of
integration over the elastic range

SYNOPSIS
y = ezb_limit( x, co ); z coordinate upper limit of
integration over the elastic beam
material
double *co, user modifiable coefficients for
defining upper limit
X, value of x coordinate for application
in setting upper limit
VH upper limit of integration
DESCRIPTION

This function defines the upper limit of integration for the z
coordinate of a beam. The limit is specifically for the elastic
range of material. The function is called by multi_at, a routine
that performs multiple numerical integration.

FUNCTIONS USED

REFERENCES
Burden, R.L. and Faires, J.D. "Numerical Analysis," third
edition, Prindle, Weber and Schmidt, Boston, 1984, pp. 153-
195.

AUTHOR: Rick Jones

VERSION: 1.0
DATE: 18 AUG 87
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double *co, x;

(

/* the second element in the array of coefficients contains a
constant that defines the upper limit for the function being
integrated */

return ( co(1) );

)
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NAME

int get_data( fp, input_int, input_real )

I't P e iR R L L ST T TSI T e e D T 2o

get data........cenvuennnnn input data from file

SYNOPSIS

include <stdio.h>

err = get_data( fp, input_int, input_real );

FILE *fp;

double *input_real;

int err,

*input_int;

DESCRIPTION

input material and
program control constants

input file
pointer to array of real constants
error code: 0 - no error
1 - error
pointer to array of integer constants

get_data accesses an open file and inputs the data associated with
Data is placed in the input file in the following

the two arrays.

format:

input_real:

a_0
a_disl
a_final
alpha

b_crack

0O 000

A
_2
_heat
hi

2]

delta_ext

e
ei

n_max
n_ult

g_check

growth_rate

h
k
k_

L

l_exciter

L_load

{ambda_0

m_beam

m_exciter

p

knife_edge

u ] tu onon

initial crack length (in).

dislocation density coefficient (disl/in"2).
final crack length (in).

linear expansion coefficient (in/in/xF).

material constant relating crack length to
torsional stiffness (lb-in).

Manson-Coffin ductility exponent.

internal damping coefficient.

internal damping coefficient (in/in).
specific heat per unit volume (psi/xF)
strain independent probability for the
remobilization of immobile dislocations.

damping ratio caused by external source
Young's modulus (psi).

Young's modulus x moment of inertia (lb-in"2).

maximum strain in beam during damping data
collection (in/in).

static plastic fracture value at 1/2 cycle
(in/in).

minimum crack growth before updating
eigenvector results (in).

crack growth rate constant based on
dislocation theory of crack growth
(in"7/lb"4-cycle).

beam height (in).

thermal conductivity (lb/sec-xF)

torsional stiffness at knife-edge support
(lb-in).

beam (ength

location of exciter relative to knife-edge
support (in).

location of load relative to knife-edge
support (in).

dislocatin density for n_p = 0 (disl/in"2).

mass of beam per unit length (slug/inch).
mass of exciter and counterweight (slug).
fatigue load applied to beam (ib).
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e_yield

yield stress (psi).

slope_factor crack dependent constant relating beam stope
and damping.

temperature = ambient temperature of specimen (xF).

toler = tolerance for iteration algorithms.

mode.element (0] thru (4] are initial guesses for the newton
iterative solution to the nonlinear beam equation, and
represent the following data

element [0] - eigenvalue, kappa*l
element[1] - resonant frequency, omega
element [2] - B coefficient

element[3] - C coefficient
element (41 - D coefficient
input_int:
data_rate = number of fatigue cycles between data output
is_type_sif = 0 for constant load
1 for constant stress intensity factor
j = initial cycle number
m = number of subintervals for integration
maxum = nunber of iteration cycles
n = number of subintervals for second integration
FUNCTIONS USED
fscanf....cociviinnnnnnnn.. read from file
REFERENCES
AUTHOR: Rick Jones
VERSION: 1.0
DATE: 19 AUG 87
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FILE *fp;
double *input_real;
int *input_int;
(
int err, i;
err = 0; /* initialize return code */
/* input all real values, one per ltine */
for ( i = 0; i < MAX_REAL; i++ )
(
if ( fscanf( fp, "%Lf", ( input_real + i ) ) == 0 )
{
/* error in input */
printf( "File error reading reals in get_data, i = Xd\n", i );
err = 1; /* set error code %/
break; /* end for loop */
>
)
/* input all integer values, one per line */
if ( err ==0)
{
for ( i = 0; i < MAX_INT; i++ )

¢
if

( fscanf( fp, “Xd", ( input_int + i ) ) == 0)

(4

/* error in input */

printf( “File error reading integers in get_data, i = Xd\n", i );
err = 1; /* set error code */

break; /* end for loop */
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b

/* return error code */
return ( err );

)}
void input_pr
NAME
input_print.........
SYNOPSIS

int{ input_int, input_real )

/Q ARRERRRRAANNREREN AN R R AR A RRENATRNRENA RN T RRAA RN AAREERRARN AN R AT TARES

include <stdio.h>

input_print( input_int, input_real );

double *input_real;
int *input_int;

DESCRIPTION

....... print input data to screen

print input material and
program control constants to screen

pointer to array of real constants
pointer to array of integer constants

This function takes the two input arrays and prints them on the
the screen along with their descriptions.

input_real:

a0

a_disl
a_final
alpha

b_crack

3
|
c
-
-
]

w e w un

g_check =

growth_rate

h
k
k_

L

(_exciter
L_load
Lambda_0

m_beam
m_exciter

knife_edge

[ L 1} [}

initial crack length (in).

dislocation density coefficient (disl/in"2).
final crack length (in).

linear expansion coefficient (in/in/xF).

material constant relating crack length to
torsional stiffness (lb-in).

Manson-Coffin ductility exponent.

internal damping coefficient.

internal damping coefficient (in/in).

specific heat per unit volume (psi/xF)
strain independent probability for the
remobilization of immobile dislocations.

damping ratio caused by external source

Young's modulus (psi).

Young's modufus x moment of inertia (lb-in"2).

maximum strain in beam during damping data
collection (in/in).

= static plastic fracture value at 1/2 cycle

(in/in).

minimum crack growth before updating
eigenvector results (in).

craeck growth rate constant based on
dislocation theory of crack growth
(in"7/lb 4-cycle).

beam height (in).

thermal conductivity (lb/sec-xF)

torsional stiffness at knife-edge support
(ib-in).

beam {ength

tocation of exciter relative to knife-edge
support (in).

location of load relative to knife-edge
support (in).

dislocatin density for n_p = 0 (disl/in"2).

mass of beam per unit length (slug/inch).

mass of exciter and counterweignt (slug).
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p =
e_yield = yield stress (psi).
slope_factor =

and damping.
temperature =
toler =

fatigue load applied to beam (lb).
crack dependent constant relating beam slope

ambient temperature of specimen (xF).
tolerance for iteration algorithms.

mode.element [0] thru [4] are initial guesses for the newton
iterative solution to the nonlinear beam equation, and
represent the following data

element [0] - eigenvalue, kappa*l
element (1] - resonant frequency, omega
element 2] - B coefficient

element {31 - C coefficient
element[4) - D coefficient

number of fatigue cycles between data output

input_int:
data_rate =
is_type_sif = 0 for constant load
1 for constant stress intensity factor
j = initial cycle number
m = number of subintervals for integration
maxum = number of iteration cycles
n =

FUNCTIONS USED

REFERENCES

AUTHOR: Rick Jones
VERSION: 1.0

DATE: 19 AUG 87

number of subintervals for second integration

ARRERERAANN RN ERR RN AN RN RENANRAANN RN AARAN AR A ER AN TR R TR drd t/

double *input_real;

int *input_

<

int;

/* print real input data to screen */

printf(
printf(
printf(
printf(
printf(
printf(
printf(
printf(
printf(
printf(
printf(
printf(
printf(
printf(
printf(
printf(
printf(
printf(
printf(
printf(
printf(
printf(
printf(
printf(
printf(
printf(
printf(
printf(

“initial crack length
"dislocation density coefficient
“final crack length

“linear expansion coefficient
"crack torsional stiffness slope
"Manson-Coffin ductility exponent
"internal damping coefficent 1
“internal damping coefficent 2
“specific heat

“remobilization probability
“external damping ratio

“Young's modulus

“modulus x Moment of lnertia
“damping cycle maximum strain
“static plastic fracture value
"eigenvalue update parameter
“crack growth rate

“beam height

"thermal conductivity
"knife-edge torsional stiffness
"beam length

“excitation location

“initial dislocation density
"fatigue load location

"beam mass per unit length
Hexciter mass

"fatigue load

"yield stress

X11.4le
X11.41e
X11.41e
X11.4le
X11.4le
X11.41e
%11.4le
X11.4le
Xitl.éle
X11.4le
Xit.4le
X11.4le
X11.4le
X11.4le
X11.4le
X1t1.4le
X11.4le
X11.4le
X11.4le
X11.4le
X11.41e
X11.4le
%11.4le
X11.4le
X11.4le
%11.41e
%11.41e
Xt1.4le
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(in)\n", input_real (0] );
(disl/in"2)\n", input_reat (1] );
(in)\n", input_real (2] );
(in/in/xF)\n", input_real (3] );
(tb-in)\n", input_real(4] );
\n", input_real (5] );

\n*, input_real (6] );
(in/in)\n", input_real (7] );
(psi/xF)\n*, input_real (8] );
\n", input_real(9) );

\n", input_real (10] );
(psi)\n", input_real (113 );
(lb-in"2)\n", input_real (12} );
(in/in)\n*, input_real [13] );
(in/in)\n*, input_real(14] );
(in)\n", input_real{15] );

(in"7/lb"4-cycle)\n*, input_real {16] )

(in)\n", input_real [17] );
(lb/sec-xF)\n", input_real [18) );
(lb-in)\n", input_real [19] );
(in)\n", input_real (20] );
(in)\n", input_real [21] );
(dist/in"2)\n", input_real [22] );
(in)\n", input_real [23] );
(slug/in)\n", input_real [24] );
(slug)\n", input_real [25] );
(Lb)\n*, input_real [26]) );
(psi)\n®, input_real (27]) );




printf( “damping slope factor %11.4le \n", input_real (28] );

printf( “temperature %11.41e (xF)\n", input_real[29] );
printf( “approximation tolerance X11.4le \n", input_real(30) );

printf( "initial guess of beam mode parameters\n" );

printf( » eigenvalue X11.4le \n", input_real[31} );

printf( * resonant frequency %11.4le (rad/sec)\n", input_real [32) );
printf( * B coefficient %11.4le \n", input_real [33] );

printf( ®* C coefficient %11.4le \n", input_real [34) );

printf( * D coefficient %11.4le \n*, input_real [35] );

/* print integer input data to screen */
printf( “sampling interval X5d (cycle)\n", input_inti0) );

/* report load type */
if ( *C input_int + 1) ==0)
printf( “load type - constant load\n" );

else
printf( "load type - constant stress intensity factor\n" );

printf( “initial cycle number %5d (cycle)\n", input_intl[2] );
printf( “subintervals for integration X5d (intervals)\n", input_int[3] );
printf( "maximum iteration cycles x5d (cycle)\n”, input_int{4] );
printf( “subintervals on 2nd integration X5d (intervals)\n", input_int(5] );
return;

)

double f( r )

/t RRAENAERAERA RN AN R R A RATRANRTAN AR AATA A AR NN RN AN RN A R AR RN d by

NAME

R empirical formula for pure bending
stress intensity factor

SYNOPSIS

double f();

y=f(r); pure bending stress intensity factor
empirical formula
double r, ratio of crack length to section depth
Y;: empirical formula for pure bending
DESCRIPTION

Calculate the empirical formula for pure bending

f(a/h) = 1.122 - 1.4*(a/h) + 7.33*(a/h)"2 - 13.08*(as/h)°3 +
14*(a/h) 4

( 0.2% for a/h < 0.6),
or

f(ash) = sgrt(tan(p)/p)*
(.923 + .199*(1 - sin(p))) "4/cos(p),

where p = c*a/(2*h) and r = a/h
( 0.5% for any a/h).

FUNCTIONS USED

COS. eovrrecnnsocnesncans Lattice SSP cosine function

[ 3 1 1 Lattice SSP sine function

dsqgrt...c.iiiiiiiiiiiinans Lattice SSP square root function

dtan. . ..iiiiiiinriiiinanons Lattice SSP tangent function
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REFERENCES

Tada, M., Paris, P.C. and Irwin, G.R., "The Stress Analysis of
Cracks Handbook," Del Research Corporation, Hellertown,
Pennsylvania, 1973, pp 2.13-2.14.

AUTHOR:  Rick Jones
VERSION: 1.0
DATE: 19 AUG 87
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double r;
(
double p;
double dcos(), dsin(), dsqrt(), dtan();

/* select the formula */
if (r<=0.6)
/* return polynomial catculation */
return ( 1.122 - 1.4*r + 7.33%sqr( r ) - 13.08%cube( r ) + 14.*quad( r ) );
else ¢
/* return trigonometric calculation */
p = .5*Pl*r;
return ( dsqrt( dtan( p )/p )*quad( .923 + .199*C 1. - dsin( p ) ) )/dcos( p ) );
)

douwble ki a, h, e)

/t AEARRRRREAA R R AAR AR RERAN AR T AN RN AR RER AN AN EN AN AR AR RN NN RAASRA NS

NAME
Kiceeeorueanoncanoanaaconnns stress intensity factor for pure
bending
SYNOPSIS
y = ki a, h, e ); stress intensity factor for the case of
pure bending
double a, crack length
h, section depth
e, nominal stress
Y, stress intensity factor
DESCRIPTION

Begin by calculating the stress intensity factor using an
empirical formula for pure bending

f(ash) = 1.122 - 1.4*(ash) + 7.33*(a/h) 2 - 13.08*(Ca/h)"3 +
14*Ca/h) 4
( 0.2%X for a/h < 0.6),
or
f(a/h) = sqrt(tan(psi)/psi)*

(.923 + .199*(1 - sin(psi))) 4/cos(psi),
where psi = c*a/(2%h)
¢ 0.5X% for any a/h).
y = e*sqrt(c*a)*f(as/h) stress intensity factor

FUNCTIONS USED
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dsqrt...cecnecennse e.......lattice SSP square root function
REFERENCES
Tada, H., Paris, P.C. and Irwin, G.R., "The Stress Analysis of
Cracks Handbook," Oel Research Corporation, Heliertown,
Pennsylvania, 1973, pp 2.13-2.14,
AUTHOR: Rick Jones

VERSION: 1.0
DATE: 19 AUG 87
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double a, h, e;

¢ double f(), dsqrt();
/* return the stress intensity factor */
return ( e*dsqrt( Pl*a )*f( a/h ) );

>

MATRIX modal( x, co, residuals )
/t ARRRRRERR RN EAARAANERAAA RS RN AR A AR N RAAAAAERARRT AN AN ARk
NAME
modal.......cocevevennnnnnss calculates residuals
SYNOPSIS
#include <numeric.h>

residuals = modai( x, co, residuals ); calculate residuals of
nonlinear equations

double *co; pointer to array of nonlinear equation
coefticients
MATRIX residuals vector containing equation errors based

on equation coefficients and vector
of guess values

x; vector of guess values to solve
nonlinear set of equations

DESCRIPTION

Contains user supplied equations to determine residuals in solving
nonlinear system of equations in x. This function is designed for
use with newton(), the Newton-Raphson Iterative process for
solving nonlinear sets of equations.

col0} = k_knife_edge; knife-edge stiffness

cof1) = k_crack; crack stiffness

col2) = L; beam length

col[3) = m_beam; beam mass per unit length

cof4] = m_exciter; mass of exciter

col5) = ei; modulus and moment of inertia

colé] = l_exciter; position of exciter relative to knife-

edge
col7} = (double) m; number of subdivisions for integration
FUNCTIONS USED

coeff_red....... D reduce characteristic oefficients
dCOS..iuinereenrennnennane Lattice SSP cosine function
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deosh.eovieininiiennane, Lattice SSP hyperbolic cosine function

ddphi2..cieieennencnnenas square of the second derivative of the
characteristic equation
dsSin. . .iiiiiierniincnnaces .Lattice SSP sine function
dsinh..iieiiiennnnnrennnaes Lattice SSP hyperbolic sine function
Mat_8SSigN...cccverronansan assign matrix parameters to variable
mat_delete................ .delete matrix storage space
Phieeiiiiiiiniricinncnanns square of the characteristic equation
SIMPSON. .cuviececinnaneanns numerical integration using Simpson's rule

ARRRARRAARAN AR ARRRRRRAERAT AN RAA AN RN AR RRA AR AR AN AT AN RN RN AN R b NN './

double *co;
MATRIX residuals, x;
4
D_SUPPLD h_fun, ddh_fun;
double ch_ei, c_ei, eigen, gen mass, gen_stiff;
double sh_ei, s_ei, stiff_c, stiff_ke;
double phi_datal5];
double ddphi2(), phi2();
double dcos(), dcosh(), dsin(), dsinh();
int i;
MATRIX a, coeff;
MATRIX coeff_red(), mat_assign(), mat_delete();

/* user supplied equations for beam analysis */

eigen = x.element [01*co[2]; /* eigenvalue * length */

ch_ei = dcosh( eigen );

c_ei = dcos( eigen );

sh_ei = dsinh( eigen );

s_ei = dsin( eigen );

stiff_c = col13/( x.element[0)*co[5) ); /* characteristic stiffness
at crack */

stiff_ke = ¢ol0)/( x.element[0)*col5) ); /* characteristic stiffness
at boundary */

h_fun.funct = phi2; /* beam characteristic equation */

h_fun.coeff = phi_data; /* eigenvector data */

ddh_fun.funct = ddphi2; /* second derivative of beam characteristic

equation */

ddh_fun.coeff = phi_data; /* eigenvector data */

/* characteristic equation coefficients */

phi_datal0] = x.element([0};

phi_data[1] = x.element{2});

phi_datal2] = x.element(3];

phi_data(3] = x.element(4];

phi_datal4) = 1.; /* use scale factor of 1 */

/* create a matrix */
a = mat_assign( 4, 4, NULL );

/* fill a matrix */

a.element[ 0) = 1.;

a.element[ 1] = 1.;

a.element[ 2] = -( c_ei + stiff_c*s_ei );
a.element[ 3) = s_ei;

a.element[ 4] = 0.;

a.element[ 5) = stiff_ke;

a.element[ 6) = -s_ei + stiff_c*c_ei;
a.element[ 7] = -c_ei;

a.element( 8] = 1.;

a.element[ 9] = -1.;

a.element[10] = ch_ei + stift_c*sh_ei;
a.element (11) = sh_ei;

a.element[12) = O.;

a.element [13) s;'iff_ke,'
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a.element [(14] = sh_ei + stiff_c*ch_ei;
a.element (15) = ch_ei;

/* determinate of a should be 0, first residual is det(a) */
residuals.element [0] = mat_determ({ a );

/* create a vector to hold coefficients */
coeff = mat_assign( 4, 1, NULL );

/* fill coefficients in terms of coeff(0] */
coeff = coeff_red( a, coeff );

/* calculate residuals for mode shape coefficents */
for (i =1; i <=3; ++i )
residuals.element[i+1] = coeff.element[i] - x.element([i+1];

/* beam mass */
gen_mass = col3)1*simpson( 0., col2], (int) co(7], h_fun ) +
col4)*phi2( col6], phi_data );

/* beam stiffness */
gen_stiff = co(S)*simpson( 0., co(2], (int) co(7], ddh_fun );

/* residual for fraquency */
residuals.element (1) = sqr( x.element{1] )*gen_mass - gen_stiff;

/* release storage */
a mat_delete( a );
coeff mat_delete( coeff );

return( residuals );

double n2_theta h( x, z, co )

/t RAARRTERRRARARRRENNBRARRANRANERARRARNARRAANERNNART AR A RAAE AR R whhd

NAME

n2_theta_h...........cc.nee beam strain squared multiplied by
internal damping ratio
SYNOPS1S
y = n2_theta_h( x, z, co ); beam strain squared times internal
damping ratio
double *co, expression coefficients
X, length coordinate of beam
Ye result
2; height coordinate of beam

DESCRIPTION
Catculate beam strain squared multiplied by internal damping ratio
at any x, z coordinate of a beam. The result is computed from the
following equation
y = n(x,2) " 2%_1*(c_2/n(x,2)) "2*eil(c_2/n(x,2)),

where ¢_1 and c_2 are material constants. n() is the beam strain
and ei1() is the exponential integral function.

col0) =c_1; internal damping coefficient
coll] = c_2; internal damping coefficient
col2] = kappa; eigenvalue

col3] = mode.element(2]; phi(x) coefficient B

col4)} = mode.element(3); phi(x) coefficient C

cof5] = mode.element(4]; phi(x) coefficient D
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col[6] = phi_datalél; amplitude scale factor

FUNCTIONS USED

-] ..Lattice SSP exponential integral
function
StraiN.cieeecinennnene .....beam strain
REFERENCES

Harris, C.M. and Crede, C.V. (eds). Shock and Vibration Handbook,
2nd edition, McGraw-Hill, New York, pp. 7-13 through 7-15, 1976.

Thomson, W.T. "Theory of Vibration with Applications," Prentice-
Hall, Inc. Englewood Cliffs, NJ, 1972.

Povolo, F. "On the Granato-Lucke Expression for the Amplitude-
Dependent Damping,* Scripta Metallurgica, v 9, pp 865-872, 1975.

AUTHOR: Rick Jones
VERSION: 1.0
DATE: 23 AUG 87
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double *co, x, 2;

(
double ratio;
double ei1(), strain();
int irc;
/* initialize error code */
irc = 0;
/* test input to exponential integral function */
ifCz) /* z coordinate must be nonzero */
ratio = abs( col1l/strain( x, z, &col[2] ) );
else
return( 0. );
if ( ratio > 669. ) /* test for underflow */
return ( 0. );
else
/* return result - ignore first two coefficients when providing
pointer to strain function */ -
return{ co{0]l*sgr( co{1] )*eil( ratio, &irc ) );
>

double phi( x, co )
/ﬁ LAA Rl et il s R s s il isesi sttt d it eysyyy

NAME

Phicecenen.. eeeeaean ......beam characteristic equation
SYNOPSIS
y = phi( x, co ); calculate displacement from
beam characteristic equation
double *co, coefficients of characteristic equation
X, beam coordinate
y; displacement of beam at location x
DESCRIPTION
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Calculate displacement of beam at location x. Displacement has
the following equation form

phi(x) = scale_factor*( cos( co(01*x ) + co{1l*sin{ co[01*x ) +
col2]*cosh{ co(01*x ) + co[31*sinh( col0l*x ) )

col0) = kappa;

col1]l = mode.element(2];

col[2) = mode.element(3);

co(3] = mode.element(4]:

~ol4) = scale_factor;

FUNCTIONS USED

ACOS.cvvevrarvnennssnncnnns Lattice SSP cosine function

AdCOSA. . eveereesnncncnannans Lattice SSP hyperbolic cosine function

AdSiN.ciieneerecenannsannsen Lattice SSP sine function

dsinh..ceeiiiiniennnnaanns Lattice SSP hyperbolic sine function
REFERENCES

Harris, C.M. and Crede, C.V. (eds). Shock and Vibration Handbook,
2nd edition, McGraw-Hill, New York, pp. 7-13 through 7-15, 1976.

Thomson, W.T. “Theory of Vibration with Applications," Prentice-
Hall, Inc. Englewood Cliffs, NJ, 1972.

AUTHOR: Rick Jones
VERSION: 1.0
DATE: 18 AUG 87
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double *co, x;

{

double y;
double dcos(), dcosh(), dsin(), dsinh();

/* calculate displacement of beam at x */
y = col4}*( dcos{ cofD)*x ) + co(1)*dsin( col0}*x ) +
col2)*dcosh( co[0)*x ) + co(3]1*dsinh( co(01*x ) );

return ( y );

double phi2( x, co )

/t AR REANAR A AN RN RN AN RN A AR TR AR AARTRE S AR AIAE AN AR NA AR AT T AT RN

NAME
Phig.ceeneeninciieennannens square of beam characteristic equation
SYNOPSIS
y = phi2( x, co ); calculate square of displacement from
beam characteristic equation
double *co, coefficients of characteristic equation
X, beam coordinate
y;: displacement of beam at location x
DESCRIPTION

Calculate square of displacement of beam at location x. Displacement

has the following equation form

phi(x) = scale_factor*( cos( cof0)l*x ) + col11*sin( col0]*x ) +
col2)*cosh{ col01*x ) + col31*sinh( col0]*x ) )
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co(0] = kappa;

cof1] = mode.element[2];
col2] = mode.element(3];
co(3] = mode.element([4];
col4) = scale_factor;

FUNCTIONS USED
Phice.ecieeecninececnnanas beam characteristic equation
REFERENCES

Harris, C.M. and Crede, C.V. (eds). Shock and Vibration Handbook,
2nd edition, McGraw-Hill, New York, pp. 7-13 through 7-15, 1976.

Thomson, W.T. "Theory of Vibration with Applications,” Prentice-
Hall, Inc. Englewood Cliffs, NJ, 1972.

AUTHOR: Rick Jones
VERSION: 1.0
DATE: 18 AUG 87
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double *co, x;
<

}

double phi();
/* calculate square of displacement of beam at x */

return ( sqr( phi( x, co ) ) );

/*ARGSUSED parameter x is not used in this function */

double pzb Limit( x, co )

/i tttﬁtﬁi;}tiftttititﬁti*t‘ttttti.ititﬁt*tttﬁtit.tiit'ttttiittttti'tttt

NAME
pzb_timit.......ccoonnii. z coordinate lower limit of
integration over the plastic range
SYNOPSIS
y = pzb_Limit( x, co ); z coordinate tower limit of
integration over the plastic beam
material
double *co, user modifiable coefficients for
defining lower limit
X, value of x coordinate for application
in setting lower limit
Y; lower limit of integration
DESCRIPTION

This function defines the lower Limit of integration for the z
coordinate of a beam. The limit is specifically for the plastic
range of material. The function is called by muiti_al, a routine
that performs multiple numerical integration.

FUNCTIONS USED

REFERENCES
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Burden, R.L. and Faires, J.D. "“Numerical Analysis," third
edition, Prindle, Weber and Schmidt, Boston, 1984, pp. 153-
195.

AUTHOR: Rick Jones

VERSION: 1.0
DATE: 18 AUG 87
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double *co, x;

(
/* the first element in the array of coefficients contains a constant
that defines the lower limit for the function being integrated */
return ( col0] );
)

/*ARGSUSED parameter x is not used in this function */
double pze_limit( x, co )

/' .i...it'*ﬁﬁiﬁ‘it'i‘ﬁi**tii'ii*i**iﬁt*iiittl'it*iﬁ***ﬁﬁt‘iii‘*"ii**i*‘

NAME

pze_Limit.................. z coordinate upper limit of
integration over the plastic range

SYNOPSIS

y = pzb_Llimit( x, co ); 2 coordinate upper limit of
integration over the plastic beam

material
double *co, user modifiable coefficients for
defining upper limit
X, value of x coordinate for application
in setting upper limit
y; upper limit of integration

DESCRIPTION

This function defines the upper limit of integration for the z
coordinate of a beam. The limit is specifically for the plastic
range of material. The function is called by multi_al, a routine
that performs multiple numerical integration.

FUNCTIONS USED
REFERENCES

Burden, R.L. and Faires, J.D. "“Numerical Analysis," third
edition, Prindle, Weber and Schmidt, Boston, 1984, pp. 153-
195.

AUTHOR:  Rick Jones
VERSION: 1.0
DATE: 18 AUG 87
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double *co, x;
(
/* the second element in the array of coefficients contains a
constant that defines the upper Limit for the function being
integrated */
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return ( co(1] );

/t LA A i3 2l 2dd e et il P i s st el il st sl tal ittt silssls

NAME

(o & SRR [ .....partial derivative functions
SYNOPS!S
y = p2?2( x, co ); partial deriviative of second equation
double *co, pointer to array of coefficients
X, tocation on beam
Y; partial derivative
DESCRIPTION

These functions are partial derivatives of beam generalize mass
and stiffness with respect to the eigenvalue and the beam
characteristic equation coefficients:

PeKe et iiieiiiiaeiennea partial of generalized stiffness with
respect to the eigenvalue

pekb. . i partial of generalized stiffness with
respect to the B coefficient

74 =3 partial of generalized stiffness with
respect to the C coefficient

<-4 Y« 1 partial of generalized stiffness with
respect to the D coefficient

P2M.eevnecnssannensannns partial of generalized mass with
respect to the eigenvalue

[o24) < A partial of generalized mass with
respect to the B coefficient

P2MC.cvecnnn. vesseeseann partial of generalized mass with
respect to the C coefficient

o741« 1 partial of generalized mass with

respect to the D coefficient

co{0] = kappa;

col1) = mode.element([2);
cof2] = mode.element(3];
co[3] = mode.element[4];
col4] = scale_factor;

FUNCTIONS USED

dCOS.cvvennnnnn heenacaees .Lattice SSP cosine function

dCOSh. s erenieninneecnanaann Lattice SSP hyperbolic cosine function

dsin..coceennn. cecenasanans Lattice SSP sine function

dsinh.e.ceeuiannn.- fereenan Lattice SSP hyperbolic sine function

dphiceeeiiiiiieniiienannnn. derivative of characteristic equation
with respect to length coordinate

ddphi.......... P, second derivative of characteristic
equation with respect to length
coordinate

dddphie..crseeeniiennniann third derivative of characteristic
equation with respect to length
coordinate

Phiceceieeennns eeeeeanaa beam characteristic equation

REFERENCES

Burden, R.L. and Faires, J.D. “Numerical Analysis," third
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edition, Prindle, Weber and Schmidt, Boston, 1984, pp. 153-
195.

Harris, C.M. and Crede, C.V. (eds). Shock and Vibration Handbook,
2nd edition, McGraw-Hill, New York, pp. 7-13 through 7-15, 1976.

Thomson, W.T. “Theory of Vibration with Applications," Prentice-

Hall, Inc. Englewood Cliffs, NJ, 1972.

AUTHOR: Rick Jones
VERSION: 1.0
DATE: 25 AUG 87
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double p2k( x, co)
double *co, x;

double ddphi(), dddphi();
/* partial derivative of generalized stiffness with respect to

eigenvalue */
return{ 2.*x*ddphi( x, co )Y*dddphi{ x, co )/col0) );

double p2kb{ x, co)
double *co, x;
(

double ddphi(), dsin();
/* partial derivative of generalized stiffness with respect to

coefficient B */
return ( -2.*sqr( col0) )*ddphi( x, co )*dsin( cof0l*x ) );

double p2kc( », co)
double *co, x;

4
double ddphi(), dcosh();
/* partial derivative of generalized stiffness with respect to
coefficient C */
return ( 2.*sqr( co[0) )*ddphi( x, co )*dcosh( co(01*x ) );
)

double p2kd( x, co)
double *co, x;

double ddphi(), dsinh();
/* partial derivative of generalized stiffness with respect to

coefficient D */
return ( 2.*sqr( col0] )Y*ddphi( x, co )*dsinh( co[01*x ) );
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double p2m( x, co)
double *co, x;

¢
double dphi(), phi();
/* partial derivative of generalized mass with respect to eigenvalue */
return ( 2.*x*phi( x, co )*dphi( x, co }/col0) );

>

double p2mb( x, co)
double *co, x;

{
double dsin(), phi();
/* partial derivative of generalized mass with respect to
coefficient B8 */
return ( 2.*phi{ x, co )*dsin({ col0l*x ) );
)

double pomc( x, co0)
double *co, x;

(
double dcosh(), phi();
/* partial derivative of generalized mass with respect to
coefficient C */
return ( 2.*phi( x, co )*dcosh( col[0l*x ) );
)

double p2md( x, co)
double *co, x;
4

double dsinh(), phi();

/* partial derivative of generalized mass with respect to
coefficient D */
return ( 2.*phi( x, co Y*dsinh( co[0)*x ) );

double strain( x, z, co )
/ﬁ R 2122222122224 2332223 2 2222222 22 2222 22 X2 2222 2¢22 22 222222 1243

NAME

StraiN....ovcveecnnacaaans ,beam strain
SYNOPSIS
y = strain{ x, z, co ); compute beam strain
double *co, coefficients used in strain term
X, x coordinate of beam
Y, beam strain
z; z coordinate of beam
DESCRIPTION
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Compute strain at beam coordinates given at x and z.
The strain is computed from the following formula

n(x,z) = 2*phi"(x)

co{0] = kappa;

col1l = mode.element([2];
col2] = mode.element(3];
col3] = mode.element[4];
col4] = scale_factor;

FUNCTIONS USED
ddphi..oeeenacncnens eenaes curvature of beam at location x
REFERENCES

Harris, C.M. and Crede, C.V. (eds). Shock and Vibration Handbook,
2nd edition, McGraw-Hill, New York, pp. 7-13 through 7-15, 1976.

Thomson, W.T. "Theory of Vibration with Applications," Prentice-
Hall, Inc. Englewood Cliffs, NJ, 1972.

AUTHOR : Rick Jones

VERSION: 1.0
DATE: 20 AUG 87
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double *co, x, z;
, L [

¢ double ddphi();
/* compute and return the beam strain at location x, 2. */
return( z*ddphi( x, co ) );

)

double strain2( x, z, co )
.
/t E21 2122122223 22222 22222 223 T 223222222 2 a2 2222222222l dtssd)
NAME
strain2......... vrreeesaans square of beam strain

SYNOPSIS

y = strain2( x, z, co ); compute square of beam strain

double *co, coefficients used in strain term
X, x coordinate of beam
Y, square of beam strain
z; z coordinate of beam
DESCRIPTION

Compute and square strain at beam coordinates given at x and z.
The strain is computed from the following formula

strain(x,z) = z*phi'(x)

col0] = kappa;

col1) = mode.element(2);
col2] = mode.element(3);
cof3] = mode.element(4];
col4) = scale_factor;
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FUNCTIONS USED
3 € 11 T strain of beam at location x, 2
REFERENCES

Harris, C.M. and Crede, C.V. (eds). Shock and Vibration Handbook,
2nd edition, McGraw-Rill, New York, pp. 7-13 through 7-15, 1976.

Thomson, W.T. "“Theory of Vibration with Applications," Prentice-
Hall, Inc. Englewood Cliffs, NJ, 1972.

AUTHOR: Rick Jones

VERSION: 1.0
DATE: 20 AUG 87
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double *co, x, z;
(
double strain();
/* compute and return the squared beam strain at location x, z. */

return( sqr{ strain( x, z, co ) ) );
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Appendix E

INTERNAL DAMPING TEST RESULTS

Results of the internal damping test are presented, together with a
discussion of damping measurement errors. Two types of internal damping

were observed: amplitude- and frequency-dependent damping.

DAMPING ERRORS AND CORRECTIONS

Two primary sources of error were uncovered while collecting the
symmetric cantilever beam damping data. The first error involves the
range of data collected. Low levels of stiain and acceleration are
imposed by the limits of the Licke-Granato model (Ref 34, 44), requiring
sensitive transducers to accurately depict the low input levels. In
addition, measurements are taken in the first three flexural modes of
the 6- and 8-inch beam specimens; thus, imposing a large frequency span
requirement on accelerometer performance. Table E-1 lists the range of

input data collected during the damping tests.

Table E-1. Range of Accelerations and Strains
for Cantilever Beam Damping Tests

Parameter Range

e —— -. ___,,____.4_____1
Strain 10 to 100 (microstrain)
Acceleration 1 to 300 (in./secz)
Frequency 60 to 2000 (Hz)
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The second area of error lies in the wires connecting the strain
gages to their amplifiers. These wires, vibrating with the beam speci-
men, burden the system with external damping that must be quantified in
order to extract the internal damping values from the total damping
quantity. Quantification of the external damping due to strain gage
wiring is accomplished by removing one set of wires at a time and com-
puting the resulting change in damping. Figure E-1 shows the strain
gage arrangement and indicates the order in which the wires are removed.
Designating the damping states with zero, one, two, three and four sets
of wires removed as AO, Al, Az, A3, and Aa, respectively, indicates a
damping state, Ah, for which no measurements may be taken. A4 is
estimated from A3 by subtracting the change in damping when the third

set of wires is removed, that is, A3 - (A2 - A3) or:

A =2A" - A (E-1)

This estimate assumes that the removal of the fourth set of wires affects
the damping exactly as the removal of the third set of wires. This assump-
tion is reasonable in light of the symmetric location of the third and
fourth strain gages.

To determine the external damping decrement, the frequency-dependent
decrement, AI, calculated from Equation 37, is subtracted from A4 of
Equation E-1. The external damping decrement is determined for a beam
specimen at the three fundamental modes and an average is taken. The

expression for the external damping:

3

L(a, -4 ) (E-2)
; .

where AAi and AIi are the results of Equation E-1 and Equation 37 in the
main text of this report for the ith mode, respectively. Figure 26 shows
the effect of Equation E-2 on the frequency-dependent damping decrement

for the first three modes of Lwo symmetric cantilever beams, one 6 inches

and the other 8 inches long. Figure 26 also shows Zener's Theory super-




imposed on the experimental data to demonstrate the error in using Equation
E-2. The maximum errors for the first, second, and third modes occurred
for 6-inch beam specimens and were 9, 36, and 100 percent, respectively.

In each case, the damping ratio error was on the order of 6 x 10_6.

STRAIN-AMPLITUDE DEPENDENT DAMPING DECREMENT

Calculation of the frequency-dependent and external damping
decrements reduces Equation F-22 in Appendix F to solving for the
average strain-amplitude dependent damping decrement, A
F-17, ZH
given by (Ref 44):

" In Equation
is calculated by the integration of EZAH(E), where AH(E) is

_ 2
8,(e) = C,(C,/e)E (C,/¢) (E-3)

where C1 and C2 are material constants and E1 represents the exponential
integral function of the first order.

Figure 14 in the main text of this report presents damping and
strain data collected from symmetric cantilever beam tests. In Figure
14, the damping and strain data are scaled by estimates of Lhe material
constants C1 and CZ’ respectively. These estimates are based on numerical
integration of sZAH(e) with AH(c) from Equation E-3 and strain expressed
in the form of Equation F-24 in Appendix F. A least squares fit was
used to obtain the best fit of the data to the table generated by numeri-
cal integration. An algorithm based on Neville's Tterated Interpolation
was used to obtain damping values lying between tabulated quantities.
Converting all strain measurements to maximum beam strain resulted in a
minimum measurable damping ratio of 6 x 10_6 in a strain range of 10 to
20 microstrain. Estimates of material constants are C, = 54 x 10-3 and

-6 1
C, = 144 x 10 ",
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Appendix F

DERIVATION OF SYMMETRIC CANTILEVER BEAM MODEL

INTRODUCTION

The purpose of this appendix is to develop the equations and terms
required to analyze the internal damping test results. An equation of
motion with its mass and stiffness terms is presented. The damping
ratio emerges in a form directly applicable to the internal damping test
approach and data reduction. Specific damping capacity is defined and
the experimental results in terms of amplitude- and frequency-dependent

damping are expressed together with external sources of damping.

EQUATION OF MOTION

The differential equation of motion for the symmetric cantilever

beam model is (Ref 72):
[EIw"(x,t)]" + c(x)Q(x,t) + m(x)[;b(t) + ;(x.t)] =0 (F-1)

where w is the beam displacement in the z direction and I is the beam
moment of inertia. Equation F-1 is rearranged to distinguish the forcing

function:

[ETw"(x,t)}" + c(x)w(x,t) + m(x);(x,t) = -m(x);b(t) (F-2)




Thus, the forcing function is expressed as an inertial force per unit

length -m(x)&b(t). Assuming a solution in the form:

wix,t) = i Bi qi(t) ¢i(X) (F-3)

where Bi is an amplitude-scaling factor, q; is a generalized coordinate,
and ¢i is a characteristic shape function. The equation for the generalized

coordinate qi becomes (Ref 76):

. . 1
. 2. _ . m(x) -
q; + 25w, q, +w. "q, = wb(t) M, ]0 ¢i(x) dx (F-4)

_ _ 1/2 _ 1/2
where g, = Ci/Cci’ Cri = 2(MiKi) y W, = (Ki/Mi)

and
1 2
c. =[ 6. 2(x)c(x) dx (F-5)
1 0 1
1 2
K, = j E1[¢."(x)]" dx (F-6)
1 0 1

1 2
M, =j ¢, (x)m(x) dx
1 0 1

From beam theory (Ref 77), the moment in a beam vibrating in the ith

mode, M(x), is calculated by:

M(x) = EI Bi ¢i"(x) (F-7)

where the second derivative of the characteristic shape function with
respect to x, ¢i"(x), describes the curvature in the vibrating beam.
Combining Equation F-7 with the bending moment-bending strain relation-

ship (Ref 77) produces an expression for the amplitude-scaling factor in

terms of a measured strain:

F-2




2 s(fo)

Bi = —~-~2——— — (F-S)

hKi ¢."(x)

1 (o]

where £€(x ) is a measured strain at location X and Ky is the eigenvalue

of the it mode.

DAMPINC RATIO

The acceleration expression, on the right-hand side of Equation

F-4, may be replaced by a solitary parameter, ii(t), where:
. . m(x) 1
z,(t) = 'Wb(t) —ﬁ;— ]0 ¢, (x) dx (F-9)

Assuming sinusoidal motion with wb(t) = Wb

it follows zi(t) = Zisin wt and ii = -z, 0 from which Equation F-4 may

sin wt for the vibrating beam,
be rewritten:

N . 2 _ 2 .
9, + zciqui + w,oq = Zi w sin wt (F-10)

The steady-state solution q. = B, sin(wt - 8) is then available from
y ql i

inspection to be:

Zi(w/wi)z
B, = — . . -1 s (F-11)
1 fl1 - (w/w,l)zl2 + [ZCi(w/wi)]Q}I/z

where w, is the resonant frequency of the beam and zi is defined by:

i

m(x) !
?.i = Wb(t) M f ¢i(x) dx
i 0




When the beam is driven at its resonance frequency, that is, w = w,

Equation F-11 reduces to:

B, = o~ (F-12)

Rearranging Equation F-12 to solve for the damping ratio, Ci’ results

in:

g, = (F-13)

Determination of the damping ratio, Ci’ for Equation F-2 is accomplished
by vibrating the beam at its resonant frequency, W, while measuring the
base acceleration, Gb’ and the strain at some known location on the beam,
s(xo). Equation F-8 uses s(xo) to solva for Bi and Equation F-9 requires
ﬁb and w, to solve for Zi' Using Equation F-13 with Bi and Zi will

determine the damping ratio.

SPECIF1C DAMPING CAPACITY

For a material, the ratio of energy dissipated per cycle, wd, to
the peak potential energy per cycle, U, is defined as the specific

damping capacity, A,

¥a

A = U (F-14)

As developed by Shimanuki and Doi (Ref 43), the average specific damping
capacity of a material, subject to internal friction, is expressed using

a volume element:

B _ Aw dV

T 2w av (F-15)
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where Aw and w are the energy dissipated and the peak potential energy
per cycle in a volume element, respectively. Shimanuki and Doi assume

that Aw is a function of dislocation damping in the form of A the

H)

strain amplitude-dependent decrement and A the frequency-dependent

I’
decrement. Substituting for Aw and w in Equation F-15:

A = A_+A (F-16)
where

{ e2A (e) av

_— H
by = —
f 7 dv

(F-17)

and w = 82.

In analyzing the specific damping capacity for the dynamic model
described in Equation F-2 an assumption must be made about c(x). As
presented in Equation F-16, the average specific damping capacity con-
sists of two terms: KH which is strain-amplitude dependent, and AI
which is frequency dependent. Thus, neither term is proportional to
velocity and c(x) must be treated as an equivalent expression of viscous

damping, Ceq (Ref 72). From Equation F-2,
W, = f c  wdw (F~18)
eq
Expanding w from Equation F-3, Equation F-18 becomes:
! 2 - 2
wdi = Ceq IO ¢i (x) dx f 9, (t) dt
From Equation F-5:

1 2
> . = ¢C I ¢, (x) dx
eqi eq J, i




with the resul that:
W, =¢C . f 4.2ty at
di eqi i
Assuming steady-state harmonic displacement and velocity,
W,. =B “mwC . (F-19)

From Thompson (Ref 72), wceqi = ZciKi, which when substituted into

Fquation F-19 produces the final expression for wdi:

2
Wqi = 2B me K,

The peak potential energy per cycle in the ith mode is given by:

_ 2
Ui = I/ZBi Ki

Substituting for Wd and U in Fquation F-14, the average specific damping

capacity for the beam is:

A = Aﬂci (F-20)

Fquating Equations F-16 and F-20:

Ayt B, = b, (F-21)

Equation F-21 assumes no external damping influences the damping ratio.

This assumption is not an accurate reflection of a '

'real-world" system
where attachment points and connections are subject to slippage and

friction. Therefore some external dumping must be included in the

F-6




system. This external damping is represented by Aext' Before the
specific damping capacity can be determined, Aext must be estimated.

Modifying Equation F-21 to reflect the inclusion of external damping:

A+ A = 4ng, - A (F-22)

H I ext

Characteristic shape functions for a cantilever beam are well-
defined, with authors using various formats for identical expressions
(Ref 72, 78). This paper will borrow the format of Harris and Crede

(Ref 78) to symbolize the shape function for a cantilever beam:

= - . + si - gi -
¢i(x) (cos Kix cosh rix) Ri(51n Kix sinh Kix) (F-23)

where Ri is a ratio of nonzero constants. Table F-1 displays values of
Kil and Ri for the first three modes of vibration. Differentiating

Equation F-23 twice with respect to x produces the beam curvature:
" 2 . .
= - + + + -
¢i (x) Ki [(cos Kix cosh Kix) Ri(51n Kix sinh Kix)] (F-24)

Equation F-24 is used in conjunction with Equation F-8 to compute the

amplitude scaling factor, Bi’ from experimental data, e(xo).

Table F-1. Kil and Ri for First Three Modes

of a Cantilever Beam

e
Mode, i Eigenvalue, Kil Ratio, Ri
r_.“..,,,._, e m e e e e ————— L U S O —— -4
1 1.8751 ~0.7341
2 4.6941 -1.0185




Appendix G

DERIVATION OF FOUR-POINT BEAM FATIGUE MODEL

INTRODUCTION

This appendix parallels the procedure of Appendix F in the
derivation of a model with which to analyze the results of the four-
point beam fatigue tests. An expression for the k;ife edges supporting
the fatigue specimen is derived and the boundary conditions are deter-
mined. The equation of motion and mass and stiffness terms are presented,
and the damping term is derived. TFinally, an empirical expression for

the damping observed in 4340 steel beam fatigue specimens is provided.

KNIFE-EDGE SUPPORT MODEL

Support for the four-point beam is a clamped knife-edge pair (see
Figure 10 in the main text). The knife-edge pair, while allowing some
rotation, does impose a moment, Mke' Visual observation of the knife
edges during fatigue loading indicates the besm rotates about the more
rigidly mounted knife edge of the pair. This situation introduces some
axial loading to the beam that must be accounted for when analyzing the
beam under fatigue load. However, as the strains, and therefore the
rotations, are small for the load appiied during damping data acquisition,
it is assumed the point of rotation lies along the center of the beam
and the axial loading is negligible. The error associated with this

. . -7, . . .
assumption is on the order of 10 ' given a maximum strain of 100 micro-

strain in a simple-supported beam.
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BOUNDARY CONDITIONS
The moment imposed by the knife-edge support is computed from:

Mke = kke w'(0) (G-1)

where w'(0) is the beam rotation at the knife-edge support. As:

- "
Mke = EIw (0)

where w'(0) is the beam curvature at the knife-edge support, Equation

G-1 provides a boundary condition in the form:

EIw'(0) = Ko w'(0)

The moment imposed by a crack at the beam midpoint is computed from
(Ref 79):

MC = kc(a) w'(1/2) (G-2)

where MC is the imposed moment and w'(1/2) is the beam rotation at its
midpoint. The moment is expressed as a function of the curvature at the

beam midpoint, w'(1/2),

M= Elw"(1/2) (G-3)

Equation G-2 and G-3 provide a second boundary condition:

Elw'"(1/2) = kc(a) w' (1/2)

The two remaining boundary conditions are based on a beam with a simple
support at one endpoint and guided at the other. These boundary condi-

tions are given by:

G-2




w(0) =0
and

w''"(1/2) =0
where w(0) is the displacement at the knife-edge support and w''"(1/2) is
the third derivative of the beam displacement with respect to x at the
beam midpoint.

EQUATION OF MOTION

The equation of motion fur the four-point beam is given by:

[EIw"(x,t)]" + c(x)w(x,t) + m(x)‘}}(x,t) + mex;;uex,t) =F_(1_,t) (G-4)

Employment of Equation F-3 in transforming Equation G-4 produces an

equation of motion in generalized coordinates:
. . 9 1 1
+ + = = : -
I e [o #5(x) Foxllexot) dx (6-5)

Equations F-5 and F-6 apply to Equation G-5; however, the generalized
mass expression has been altered due to the mass of the exciter. The

generalized mass is expressed as:

1 2 2
Mi = Io ¢i (x)m(x) dx + ¢i (lex)mex

The unit impulse or delta function, 8(x-%) (Ref 72), models a point
load at the location £ =1 . Assuming F_(1 ,t) is harmonic, the forcing
ex ex  ex

function is separated into two components, one x and the other t dependent.
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With this assumption, the forcing function becomes fexé(x-lex)sin wt,
where fex is the amplitude scaling factor. Using this expression,

integration in Equation G-5 becomes trivial, with the result:

. f
. 2 ex .
+ = == -
qi ZCiwiqi + wi 9, Mi ¢i(1ex) sin wt (G-6)

SPECIFIC DAMPING CAPACITY

Treating the right-hand side of Equation G-6 as the parameter ii(t),
that is,

. £
z,(t) = ﬁ§§ $.(1_) sin wt (G-7)

the relationship between displacement and specific damping capacity is
established as demonstrated in Appendix F. From Equation G-7, it follows

_ . 2 .
zi(t) = Zisin wt where z, = -z, w  and:

f

_ _ex .
2y = 930 (G-8)

Substitution of Zi into Equation G-6 produces Equation F-10 of Appendix
F. Thus, the four-point beam specimen will have its specific damping
capacity determined in a manner similar to that applied to the symmetric
cantilever beam damping specimen.

Results from the 4340 steel beam fatigue tests do not conform to
the dislocation damping based model. This appendix develops a second
damping mechanism, based on crack surface rotation, that adequately
models and explains the observed damping phenomena. This new mechanism
produces an empirical expression that is used in the four-point beam

fatigue model.




EMPIRICAL DAMPING EXPRESSION

With the results of the 4340 steel beam fatigue test suggesting a
strong relationship between the crack length and damping, the decision
was made to review previous work to reconcile the proposed constitutive
relationship with experimental data. Previous work with 1018 steel beams
f(Ref 73) included similar fatigue tests. These tests were performed
under constant load. The softer 1018 steel forms a large plastic zone
with the increasing stress intensity function associated with a constant
load. This large plastic zone does not allow the crack surfaces to touch
as the beam vibrates to collect damping data.

Figures 16 through 18 in the main text show a crack growth rate per
cycle that is proportional to the stress intensity factor raised to the

fourth power. In equation form, this relation is expressed by:

da _ 4
N = % K (G-9)

where @ is a material dependent constant, N is the fatigue cycle number,
and KI is the stress intensity factor. Equation G-9 is consistent with
the dislocation theory of crack growth as described by Frost, Marsh, and
Pook (Ref 60). Rearranging Equation G-9 and integrating over one cycle

produces:

a,

j

I ___28 = « (G-10)
a K, (a) ¢
j-1 I

where the crack growth in one cycle is calculated from:

In Equation G-10, KI is assumed to be a function of the crack length.

The expression for K. is taken from Equation 31 in the main text.

1
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Numerical integration is required to solve the integrand when this com-
plex term is substituted for KI. From the Experimental Approach section

in the main text of this report, o is defined by:

s - o
h2

where M is given by:

=4
i

laP - Mke (G-11)

N |

In Equation G-11, la is the distance from the knife-edge support to the
applied load, P, and Mke is the moment created by the knife-edge.

The natural frequency of the fatigue specimen, as the crack propa-
gates, is computed from the ratio of Equations F-6 and F-16 with adjust-
ments to kC to simulate the crack growth. The relationship between kc

and the crack length, a, using least squares analysis is:

— 3 -
kC = bc (h/a) (G-12)

where bC is a material-dependent constant (see Figure G-1). For the
4340 steel beam specimens, bC = 2.45. This relationship, for the three
beam specimens analyzed, resembles the moment of inertia expression in

its usage of beam height (Ref 77).
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